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Abstract 
Modern seismic risk assessment applications require simulation of structural behavior for different levels of earthquake 
shaking through time-history analysis. This behavior can be strongly inelastic/hysteretic and evaluating it through high-
fidelity finite element models (FEMs) introduces a significant computational burden. A reduced order modeling 
approach is discussed here to alleviate this burden. The reduced order model is developed using data from the original 
high-fidelity FEM. Static condensation is first used to obtain the condensed stiffness matrix and linear equations of 
motion for the dynamic degrees of freedom (DoFs). The restoring forces, prescribed by the linear stiffness matrix, are 
then substituted with hysteretic ones, by replacing the linear springs connecting each of the DoFs with hysteretic 
springs. Different models are examined for the latter, ranging from peak-oriented to Masing to Bouc-Wen type of 
hysteresis. Springs connecting all DoF combinations are examined and their parameters are calibrated by comparing the 
reduced order model time-history to the time-history of the initial FEM for a range of different excitations. This is 
posed as a least squares optimization problem, which is solved through global optimization algorithms. The 
characteristics for each of the considered springs are separately selected, leading to a large dimensional design vector 
for this optimization, and an efficient solution is facilitated through a sequential, hierarchical approach. The excitations 
utilized for the reduced order model calibration are carefully selected, so that nonlinear characteristics of the FEM are 
appropriately excited to support the tuning of all the important hysteretic spring features. The accuracy and the 
computational savings of the calibrated reduced order model are examined for seismic risk assessment applications by 
comparing them to the FEM predictions. A stochastic ground motion model is used to describe the seismic hazard and 
the accuracy for different levels of intensity is separately examined. Finally, a multi-fidelity Monte Carlo method is 
used to establish a computationally efficient unbiased estimator of any output quantity of the FEM. This method 
leverages the low-cost, potentially biased, reduced order model evaluations to accelerate the risk assessment estimation 
within a Monte Carlo setting, and occasionally uses resources from the computationally expensive high-fidelity FEM to 
establish unbiased calculations. This multi-fidelity approach provides high accuracy risk estimates, as if only the FEM 
was used in the calculations, but simultaneously leverages both the computational efficiency of the reduced order model 
as well as its correlation to the FEM to offer a substantial improvement with respect to the computational effort. Both 
the latter features, computational efficiency and correlation to FEM predictions, are essential for this multi-fidelity 
approach to work well, and it is shown that the proposed reduced order model tuning accommodates both well.  

Keywords: reduced order modeling; seismic risk assessment; sequential optimization; multi-fidelity approach 
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1. Introduction 
Under strong seismic excitations, structural systems exhibit inelastic, hysteretic behavior and the evaluation 
of their dynamic response requires development of nonlinear finite element models (FEMs). For seismic risk 
assessment and loss estimation [1], this is typically performed using either concentrated plasticity models, 
using nonlinear hinges to represent the behavior in locations of anticipated damages, or distributed 
inelasticity models, using a fiber discretization of the cross sectional area of all structural elements and 
adopting appropriate nonlinear constitutive laws for the material behavior. The computational burden of 
using such models is significant, especially for applications, like probabilistic risk (and loss) assessment, that 
estimate risk by, usually, adopting a Monte Carlo (MC) approach that entails a significant number of 
nonlinear time history responses, for different excitations and different intensity levels of ground shaking. 
Reduced order modeling offers an alternative modeling approach to alleviate this computational burden. 
Formally, reduced order models (ROMs) simplify the physics-based description of the original FEM through 
some form of condensation of the initial degrees of freedom and equations of motion. For facilitating the 
desired computational efficiency for seismic risk assessment applications, this condensation needs to be 
coupled with an approximation of the nonlinear response characteristics. The calibration of the nonlinear 
properties of the resulting hysteretic ROM should be performed using data from the original nonlinear FEM, 
with ultimate objective that the reduced order approximate model matches closely the high-fidelity one for 
excitations similar to the ones that is intended to be used for. Then, the calibrated ROM replace the high 
fidelity FEM for estimating the seismic risk. Though noteworthy attempts do exist for calibrating ROMs by 
comparing to nonlinear FEMs [2, 3], they do have some limitations. Study [2] was constrained to shear-type 
of structural models and performed the ROM tuning using nonlinear static analysis. Study [3] addressed any 
planar structural model and performed tuning using nonlinear response history analysis (NLRHA), but was 
primarily constrained to simple dynamic excitations for the tuning, while it adopted a simplified 
parameterization of the nonlinear hysteretic force approximation and performed validation for limited 
excitations.  

This study extends these efforts and presents a comprehensive approach for tuning and validation of 
hysteretic ROMs [4]. Linear characteristics of the ROM are obtained using static condensation of the initial 
FEM, while nonlinear characteristics are calibrated by comparing response to the nonlinear FEM response 
under different earthquake acceleration time-histories. A sequential formulation of the associated least 
squares optimization problem is established so that the approach can accommodate adoption of complex 
descriptions for the ROM hysteretic forces. Validation is performed with respect to seismic risk estimation 
for different seismicity scenarios extending to lower and higher intensity excitations. While the use of low-
fidelity ROMs is offering a substantial MC speedup in this context, the corresponding estimation might be 
biased when compared against the one established using higher-fidelity, higher accuracy, numerical models. 
For that reason, a multi-fidelity Monte Carlo (MC) [5, 6] method is also utilized. This approach is 
leveraging, instead of entirely replacing, a small number of the computationally expensive response 
estimations offered by the FEM, to establish unbiasedness, while uses a significant number of the low-cost 
response approximations of the ROM, to speed-up the estimation. The number of simulations for each of the 
models is optimally selected [7], based on the correlation between them, to minimize the variance of the MC 
estimator, for a given computational budget. The benefits of using ROM in risk assessment applications and 
of utilizing the multi-fidelity MC are demonstrated in an illustrative example that considers two structures, 
corresponding to different heights and materials, with high-fidelity FEMs developed in OpenSees. 

2. Reduced order model formulation 
2.1 Condensed structural model 
In this study, emphasis is placed on planar structural models (as also shown in Fig. 1) and under the common 
modeling assumptions of infinite axial floor rigidity and zero rotational mass for individual nodes, the model 
can be condensed to one degree of freedom (DoF) per story. The corresponding stiffness matrix is obtained 
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through static condensation of the original FEM. Let n
s ∈x   denote the vector of displacements for each 

floor relative to the base. The equation of motion of the linear condensed model is: 

                                                              s s s s s s s s gx+ + = −M x C x K x M R                                                            (1) 

where Ms and Ks are the n n×   mass and stiffness matrices, respectively, both chosen to match the FEM 
ones, Cs is the n n×   damping matrix, modeled using the same assumptions as for the FEM, n

s ∈R   is the 
vector of earthquake influence coefficients and gx ∈   represents the acceleration of the base. Eq. (1)   
facilitates a match of the linear response between the ROM and the high-fidelity FEM. 

2.2 Representation Through linear springs 
Consider now the combination of all nt=n(n-1) springs connecting the degrees of freedom to each other and 
to the ground. The spring connecting degrees of freedom i and j is denoted by sij where i=1, …, n; j=0, i+1, 
…, n. Index j=0 is used to represent the connection to the ground. Let Ts be the tn n×  connectivity matrix 
relating the relative displacements at the ends of each spring δij to vector xs. Each row of Ts corresponds to a 
separate spring sij and has all elements zero apart from the ith element equal to 1 and the jth element when 

0j ≠  equal to -1. If δ is the vector with relative spring displacements, δij, then δ=Τsxs. The condensed 
stiffness matrix can be equivalent expressed as: 

T
s s l s=K T K T                                                                             (2)   

where Kl is the diagonal matrix with elements: 

                          0 , 1
if    0    &       if    0[ ]   [ ] [ ]   nl l

ij s ij i s ii s ikk i k
k kj j

≠ =
≠= == −∑K K K                                        (3)                              

where [.]ij represents the ijth element of a matrix. This spring formation with spring characteristics l
ijk  given 

by Eq. (3) matches exactly the linear FEM stiffness. 

                                                                                                                                 

    
 

 
 

 

 

 

 

                     

Fig. 1 – Structural model and representation through springs (in grey) connecting the different Dofs. 

2.3 Hysteretic model 
The formulation of the hysteretic ROM is established by modeling spring forces fij to be nonlinear instead of 
the linear ones l

ij ijk δ . Each nonlinear spring force is defined as a function of the spring displacement δij 
parameterized through nt dimensional vector qij. Typical choices for this function [2, 3] include piecewise 
linear elastic-perfectly plastic (PP) or peak-oriented (PO) models, generalized Masing models (GM) and 
Bouc-Wen (BW) models. The hysteretic spring forces for all aforementioned models are given by  

                                                          (1 ) ( )l
ij ij ij ij ij ij ijf a k a gδ δ= + −                                                             (4)                                  

mn

m2

m1 x1

x2

xn

gx
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where the hysteretic function gij(.) depends on the exact hysteretic model used. Details for the formulation of 
the four hysteretic models can be found in [2].  

Not all spring sij, though, need to be necessarily modeled as hysteretic (i.e., inelastic) ones. Some can be 
considered as linear. We will use notation {.} to represent the combination of all springs (or their parameters) 
that are modeled to be hysteretic. Size of {sij}, i.e. number of inelastic springs, is denoted nc. The 
connectivity matrix for {sij} is denoted by Tc and is obtained by retaining only the rows of Ts that correspond 
to elements of {sij}. The equation of motion of the hysteretic ROM are  

                                                 ({ ( )})T rem

s s s s c ij ij s s s s gdiag g xδ+ + + = −M x C x T K x M R                                      (5) 

where diag(a) stands for diagonal matrix with diagonal elements corresponding to vector a and rem
sK  is 

matrix corresponding to linear spring components, given by  

                                                       ({(1 ) })rem T l
s s c ij ij cdiag a k= − −K K T T                                                          (6)         

Structural model represented by Eq. (5) matches exactly the linear FEM response. The match to the 
nonlinear FEM response depends on how h

gx  well the chosen hysteretic function approximates the actual 
hysteretic behavior and on the selection of parameters {qij} of that function. That selection is discussed next. 

3. Calibration of inelastic parameters 
3.1 Formulation of calibration problem 
Calibration of the model parameters pertains to selection of ntnc dimensional vector q corresponding to {qij}. 
This is established by comparing nonlinear time-history responses between the hysteretic ROM and the 
nonlinear FEM. Comparison should consider different earthquake excitations; since objective of the ROM 
development is to replace the FEM for seismic loss estimation, its calibration should consider same 
operational conditions, that is earthquake excitations, instead of simplified excitations.  

To formalize this calibration, let [ ; h=1,.., nh] represent the set of eartquakes considered and y=[yl; 
l=1,…,ny] the set of response outputs used in the calibration. The selection of the earthquake set should 
excite all essential components of the FEM nonlinear behavior, providing sufficient information for the 
calibraiton of the corresponding nonlinear ROM springs. This can be accomplished if a large number of 
excitations is examined. These do not need to be distinct, rather scaling of the same earthquakes can be also 
considered. For the set of response outputs, since seismic losses exhibit sifnigicant sensitivity to drift 
engineering demand parameters and, furthermore, inelastic structural behavior typically results in residual 
drifts, response output vector y should include at least inter-storey drifts, preferably for all floors. Also, for 
the hth earthquake, calibration is performed over time duration Th, typically extending over the entire 
duration of the earthquake. The output from NLRHA for the FEM for each earthquake and time instance will 
be denoted by ( | )l h h

FEM r gy t x . For the ROM, corresponding notation will be ( | , )l h h
ROM r gy t x p . The objective 

function is given by the weighted mean squared discrepancy  

            2

0
1 1

1 1 1( ) ( ) ( | )  ; ( | ) ( ( | ) ( | , ))
yh

h
nn Tl hl l h l h

h h hl hl FEM g ROM g
h lh y h

F w w w t e t dt e t y t x y t x
n n T= =

  
= = −     

∑ ∑ ∫q q q q           (7) 

where wh is the weight for each earthquake, h
lw  is the weight for each output for the hth earthquake, ( )hlw t  is 

the weight per time instance for the lth output and hth earthquake, and ehl(t|q) represents the discrepancy 
between the FEM and ROM time-histories. Selection of q is finally posed as the nonlinear constrained 
optimization problem 

                                               
min max

*

[ , ]
arg min ( )    such that min(eig( )) 0rem

sF
∈

= >
q q q

q q K                                             (8) 
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where [qmin, qmax] represents the box-bounded constraint for q and min(eig( ))rem
sK  corresponds to the 

minimum eigenvalue for matrix rem
sK . The constraint for that eigenvalue being positive guarantees that the 

ROM corresponds to a stable structural model. 

3.2 Sequential optimization 
The optimization problem of Eq. (8) is nonconvex and has a costly objective function involving nh NLRHAs  
for the ROM. Solution of this optimization is performed here through a two-step approach, combining an 
efficient global optimization (EGO) as a first step [9] to search the entire [qmin, qmax] domain and identify a 
candidate global optimum and a gradient-based optimization (NPSOL) as a second step [10] to further 
improve upon this solution. Genetic algorithms (GA) [11] can be alternatively considered for the global 
optimization step.  

   For problems, though, with large dimensional vector q the cost associated with the global search over 
domain [qmin, qmax] can be prohibitively high. Since that global search is important due to the non-convex 
nature of the problem, a sequential optimization is proposed here. The basic idea is to gradually and 
hierarchically increase the number of spring features that are considered as inelastic, starting from the most 
important ones, and at each iteration optimize only for the newly added spring parameters. In the final 
optimization stage, a simultaneous gradient-based optimization of all nonlinear spring parameters is 
established, with initial point the values identified through the global optimization sub-problems in the 
previous iterations, in order to take into account, the correlation between the independently optimized 
springs. The optimization workflow is described in detail in [4]. 

3.3 Selection of type of hysteresis and of earthquake excitations 
For selecting the type of hysteresis, all possible models should be considered, for example PO, PP, 

GM and BW discussed earlier, and the one corresponding to the smaller objective function value F(q*) 
should be adopted. Model parsimony can be incorporated in the analysis, if desired, using Bayesian 
inference, for example the well-known Bayesian information criterion. The selection of the earthquake 
excitation set  [ h

gx  ; h=1,.., nh], now, is critical for the proper calibration of the spring inelastic parameters. 
This set should excite all essential components of the FEM nonlinear behavior, providing sufficient 
information for the calibraiton of the corresponding nonlinear reduced order model springs. These do not 
need to be distinct, rather scaling of the same earthquakes can be also considered. The range of excitation 
intensities should encompass the operating conditions that the reduced order model will be used for. More 
details about the selection of appropriate earthquake excitations can be found in [4]. 

4. Illustrative example 
4.1 Details of structural models and simulation characteristics 
For the illustrative example, two structures are used. For both structures, the nonlinear FEM is developed in 
OpenSees [12] using fiber modeling approach for the describing hysteretic behavior, with the selection of 
fiber elements following recommendations from [13]. The first structure, denoted as S1 corresponds to a nine 
story benchmark structure, discussed in detail in [14]. Material characteristics are: modulus of elasticity 
E=1.99 105 MPa for both beams and columns, yield stress for the columns 345 MPa and 248 MPa for the 
beams, using the values proposed in [14]. For modeling material inelastic behavior, the Giuffre'-Menegotto-
Pinto model with isotropic strain hardening is chosen for the steel fibers. For the latter model, the values 
suggested in [15] are used for the cyclic curvature parameter and for the parameters defining isotropic strain 
hardening in compression and tension, while the strain hardening ratio is taken as 0.02. Total number of fiber 
elements per section is set to 24. Damping matrix Cs is modeled through Rayleigh damping assumption with 
damping ratios selected as 2% for 1st and 3rd modes. The fundamental period for the S1 structure is 2.274 s. 
The second structure, denoted herein as S2, is the three-story symmetric concrete MRF building described in 
detail in [2]. The only difference from [2] is that the reinforcement ratio for exterior columns is increased to 
1.5% (compared to the 1% initially used) to better reflect modern code-compliant structures. As in [2] one of 
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the exterior three-bay frames is examined, with each bay having 6.5 m span and each story having 3.5 m 
height.  The OpenSees FEM fiber model is constructed using 20 fibers for the confined core and 15 fibers for 
the unconfined section per each direction. For the constitutive material laws for concrete and steel, OpenSees 
materials Concrete02 [16] and Steel02 [17] are used respectively. It should be noted here that the concrete 
material that was used is a linear tension softening material, that also incorporates strength and stiffness 
degradation. Damping matrix Cs is modeled through Rayleigh damping assumption with damping ratios 
selected as 5% for 1st and 3rd modes. The fundamental period for structure S2 is 0.57 s. 

  The ROMs are developed in the SIMULINK simulation environment using guidelines discussed in 
[2] for performing the NLRHA, adopting accelerator mode for shortening model simulation time. For a time-
step of 0.01 s and using Newmark’s average acceleration for numerical integration and for excitation of 
duration of 40 s (this corresponds to Loma Prieta excitation used later in calibration) the computational time 
required for the NLRHA in a desktop with 4core Xeon 3.1GB processor is 111 s and 39 s for the OpenSees 
model corresponding to structures S1 and S2 respectively. The corresponding simulation times under the 
same simulation characteristics (same numerical integrator and time-step) for the ROM are 0.20 s and 0.28 s 
for structures S1 and S2 respectively when using the BW hysteretic model, and 0.18 s and 0.15 s for 
structures S1 and S2 respectively when using the PP hysteretic model. These two represent the most and least, 
respectively, computationally intensive models from the ones considered. The comparison of computational 
effort demonstrates the significant computational savings that the ROM can offer; a 100 to 600-fold 
reduction for computational effort is established. 

4.2 Reduced order model calibration 
For the calibration, six different recorded ground motions are considered, taken from the PEER Strong 
Motion database [18]: Kobe, Northridge and Loma Prieta, earthquakes that correspond to high intensity 
excitations for both structures (shown in [4]), and ChiChi, Friuli and Imperial Valley, which are low intensity 
excitations (also shown in [4]). For these excitations, three different calibration scenarios are examined. The 
first one, denoted as SC1, uses the first three high intensity excitations (nh=3); the second, denoted as SC2, 
considers additionally scaled versions of the three recorded excitations using scaling 1.25 (nh=6); the third 
one, denoted as SC3, considers all six excitations (nh=6). All four different hysteretic models discussed in 
Section 2.3 are considered. No degrading characteristics are being incorporated for structure S1 but 
degradation is incorporated in the models for structure S2.  

 The reduced order models calibrated through each of the considered scenarios are denoted, respectively 
by D1, D2 and D3. Only inter-storey drift ratios of every floor were used in the calibration stage. For each 
earthquake, the strong ground motion duration with discretization dt=0.01 is assumed for defining tr. 
Considering further the different weights appearing in the objective function definition in this study, the 
definition for ( )hlw t  focuses on the strong ground motion duration, so that matching to EDP peaks, which 
typically occur during that duration, is prioritized. The cumulative energy of the earthquake excitation up to 
time instance t is considered for this purpose, given by:   

                                                                ( )2

0
( ) ( )

2
t h

h gt x t dt
g
πε = ∫                                                             (9) 

For  t=Th this energy corresponds to the Arias intensity ( )h
a h hI Tε=  of the excitation. Weight ( )hlw t  is set 

equal to 1 for all time instances corresponding to cumulative energy between 5%-97.5% of the total energy 
of the excitation 

                                                 
1  if 0.05 ( ) / ( ) 0.975

( )
0  else

h h hhl t T
w t

ε ε≤ ≤
= 


                                    (10) 

This choice weights equally all time-instances during the strong ground motion duration, the latter taken to 
extend up to the 97.5% of the total excitation energy compared to the common definition of 95% of the total 
excitation energy. This extension is chosen here to capture better residual drift responses. Finally, weight l

hw  
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introduces a normalization for the different response quantities and in this study is chosen as the variance of 
the FEM response ( | )l h h

FEM r gy t x   

     2

0

1 ( )( ( | ))hTl hl l h
h FEM g

h

w w t y t x dt
T

= ∫                                                (11)                                                                                                

Table 1: Optimal value of the objective function F(q*) for the different hysteretic models and main 
calibration scenarios for each of the two structures 

Hysteretic model Structure S1 Structure S2 

SC1 SC2 SC3 SC1 SC2 SC3 

PO 0.1737 0.1949 0.1672 0.1371 0.1395 0.1974 

PP 0.0531 0.0599 0.0473 0.2457 0.2371 0.2879 

GM 0.0377 0.0460 0.0238 0.1725 0.2032 0.2115 

BW 0.0202 0.0206 0.0197 0.1612 0.1934 0.1854 

Linear ROM 2.0860 2.3905 1.2932 1.4331 1.5024 1.2972 

 
Table 2: Value for F(q) for the three different calibration scenarios for the three different calibration cases 
using the BW and PO models for structures S1 and S2 respectively.  

Structure ROM Calibration scenario 

SC1 SC2 SC3 

S1 

[BW hysteresis] 

D1 0.0202 0.0228 0.0236 

D2 0.0205 0.0206 0.0255 

D3 0.0224 0.0259 0.0197 

S2 

[PO hysteresis] 

D1 0.1371 0.1982 0.2564 

D2 0.1562 0.1395 0.2347 

D3 0.1423 0.312 0.1974 

 
Results for the calibration of the ROM are reported in Table 1 and Table 2. In Table 1, the resultant 

objective function values for the main calibration scenarios are reported, along with results for the linear 
ROM (all springs considered linear). It is evident, that BW and PO models outperform the other ones for S1 
and S2 structure, respectively, and are the only one considered for the remainder of the discussions. In 
addition, it is clear that the values of the objective function for S2 are worse compared to S1. This should be 
attributed to a more complex nonlinear behavior of reinforced concrete structures, as explained in [4].Table 2 
presents the objective function value F(q), evaluated for the three different designs D1, D2 and D3 for each 
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calibration scenario, for both structures and for the BW and PO hysteresis. Results show that performance is 
similar across all different calibrations, especially for SC2 and SC3, indicating that even the initial selection of 
the three earthquakes has sufficient information to identify all spring nonlinearities.   

4.3 Validation of reduced order model for seismic risk assessment 
Validation is first examined looking at time-history response. The first validation step briefly discusses time-
history response for an excitation that was not part of the initial calibrations scenario. Figure 2 presents time-
histories for the nonlinear OpenSees FEM, the linear FEM and the calibrated ROM for top floor inter-story 
drift and top floor acceleration (columns of the figure) for both structures (rows of the figure) for the Kocaeli 
earthquake ground motion. Very good agreement is reported across the entire time-history for the calibrated 
ROM (compare to the poor agreement for the linear model), extending to both peak and overall responses 
and to both EDPs. This offers a first validation of the robustness of the calibration procedure: for different 
excitations and even for EDPs that were not explicitly considered at the calibration stage, the resultant 
models offer the same quality of match to the nonlinear OpenSees FEM as the match observed for the 
excitations and EDPs these models have been optimized against. 

 

 

 

 

 

 

 

 
Fig. 2: Comparison of time-history responses for an inter-story drift and top floor acceleration for the both 
structures (rows of the figure) for Kocaeli earthquake ground motion. Results for nonlinear Opensees FEM, 
best ROM and linear ROM shown. 

The more interesting comparison is, of course, with respect to loss estimation, instead of individual 
excitations. For describing the seismic hazard for this comparison the stochastic ground motion model 
developed recently by Vlachos et al. [19] is used. Four different seismicity scenarios are considered 
corresponding to combinations of moment magnitude Μ=[6.5, 7.5] and rupture distance R=[20, 50] km. With 
respect to local site conditions (required by ground motion model) the shear wave velocity at top 30 m of soil 
600 m/s. Seismic risk is expressed with respect to the complementary cumulative distribution function 
(CCDF), corresponding to the probability that engineering demand parameter EDPj will exceed specific 
threshold β, P[EDP>β], for a range of thresholds corresponding to probabilities [0.01-1], for each seismicity 
scenario. For each seismicity scenario, 1000 samples were used to calculate the CCDF curves. Figures 3 and 
4 present results for structures S1 and S2 respectively for selective EDPs (first floor drift and top floor 
acceleration). Results in the figures show that the proposed calibration approach facilitates very good 
agreement with respect to risk estimates across different thresholds for all seismicity scenarios and EDPs. 
Exception is the top floor acceleration for structure S2, for low values of the threshold acceleration, for which 
larger discrepancies are evident. These large discrepancies can be particularly observed for the lowest 
seismicity scenario examined (M=6.5, R=50km). Such larger discrepancies can be avoided by putting some 
preference in matching acceleration response for lower intensity excitations at the calibration stage. The 
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effects of this choice should be carefully examined, though, since it will inevitably reduce the approximation 
quality for large intensity excitations. Another way to increase accuracy and actually establish an unbiased 
estimator for accelerations and inter-story drifts is a multi-fidelity Monte Carlo estimation, described in the 
following section. 

 

 

 

 

 

 

 

 

 

Fig. 3: Comparison of CCDF curves from the high-fidelity OpenSees and best ROM corresponding to 
calibration D1 for structure S1. Results for selective seismicity scenarios and EDPs are shown.  
  

 

 

  
  
  
  
  
 

 

 

 

Fig. 4: Comparison of CCDF curves from the high-fidelity OpenSees and best ROM corresponding to 
calibration D1 for structure S2. Results for selective seismicity scenarios and EDPs are shown. 

 4.4 Multi-fidelity Monte Carlo (MFMC) estimation 
Finally, a multi-fidelity Monte Carlo estimation [7] (MFMC) implementation is examined within this 
illustrative example to showcase the benefits it can provide in seismic risk assessment applications. This 
approach leverages low computational cost, biased evaluations from a low-fidelity ROM to significantly 
accelerate the estimation process, and occasionally uses resources from the computationally expensive high-
fidelity FEM, to establish an unbiased Monte Carlo (MC) estimation. This estimation will be used to 
replicate Fig.4, for structure S2, for which large discrepancies were observed, especially for accelerations. 

To better frame MFMC, let’s first revisit the single-fidelity Monte Carlo (MC) estimation utilized in 
section 4.3 to compute P[EDP>β]. For either the FEM or ROM, and for each seismicity scenario, the 
estimate for the CCDF is given by    
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where Nq is the number of samples used in the estimation, EDPk is the EDP sample for the kth seismic 
excitation, with subscript FEM and ROM used to distinguish between the two models, and I[.] is the 
indicator function taking value equal to 1 if the relationship inside the brackets holds, else it is zero. The 
multi-fidelity Monte Carlo (MFMC) estimator for the CCDF, combines calculations by both models into a 
single MC estimation. It leverages the lower-fidelity ROM model to create a control variate to accelerate the 
MC estimation for the higher fidelity FEM. The MFMC estimation is ultimately expressed as [7]: 
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where a is the control variate parameter and NFEM and NROM are the number of evaluations from the FEM and 
ROM respectively. This MFMC implementation provides always unbiased predictions with respect to the 
FEM risk estimates, correcting any potential challenges for the ROM accuracy, like the ones identified in the 
previous section for structure S2. It also facilitates a reduction of the computational burden, expressed 
through a reduction of the variability (coefficient of variation) of the MC estimator, compared to an MC 
implementation that uses only the FEM. The number of simulations from each of the models and the value of 
the control variate are selected with objective to minimize exactly this variability of the MFMC estimator for 
a given computational budget. Denoting by r=NROM/NFEM the ratio of the number of model simulations, it can 
be shown [7], that the optimal value for this ratio is given by 

                                                             ( )
( )

2
*

2
 

1

FEM

ROM

c
r

c

ρ

ρ

⋅
=

 − 

                                                                      (14) 

where ρ is the correlation coefficient of [ ]I EDP β>  between the FEM and ROM  and cFEM and cROM are the 
computational times needed for one analysis, for the FEM and ROM respectively. The optimal control 
variate a* [7] is given by 

                                                          * [ [ ]]    
[ [ ]]

FEM

ROM

Var Ia
Var

EDP
EI DP

βρ
β

>
=

>
                                                            (15) 

where Var[.] denotes variance. Finally, the efficiency of the MFMC estimation can be measured by the 
reduction of effort to achieve the same MC accuracy (i.e. estimator variability) compared to the MC 
estimation relying solely on the high-fidelity model. The reciprocal of these savings is termed as speed-up 
and denotes sp herein. It can be shown that it is given by 

                                                    
1

211 1    
FEM

FEM ROM

csp
c r c r

ρ
−

  = ⋅ − − ⋅  + ⋅   
                                                  (16) 

It is evident from these equations that the overall efficiency of the MFMC implementation depends on both 
the computational efficiency of the ROM and its degree of correlation to the FEM, features that are explicitly 
optimized within the proposed ROM calibration scheme discussed in this paper.  

 In order to use the MFMC estimator to calculate the CCDF curves, the optimal r* needs to be 
evaluated, for every EDP and every threshold. Since seismic risk assessment requires simultaneous 
estimation of the risk for multiple quantities of interest, it is highly impractical to calculate a different 
number of model evaluations for every estimation. Thus, in this example, the optimal r* will be calculated 
only once, for a specific EDP, threshold β and seismicity scenario, and then use the same number of 
evaluations for all the other calculations. The optimal control variate a* can be calculated for every 
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estimation case separately. Due to the fact that large discrepancies were observed for top-floor accelerations, 
for the lowest seismicity scenario examined (M=6.5, R=50km) and especially for [ ] 40%P EDP β> < , 
acceleration is selected as the EDP for the MFMC estimation and the optimal r* will be calculated for 

[ ] 20%P EDP β> = , for the M=6.5, R=50 km scenario. Thus, the optimal ratio is found to be equal to 6.39. 
The number of ROM evaluations that are going to be used in the MFMC estimation is still 1000 and the 
FEM evaluation that are going to be included are  * 155FEM ROMN r N= ⋅ = . Fig. 5 presents results for 
structures S2 for first floor drift and top floor acceleration, in direct comparison to Fig. 4. Results in the 
figures show that the proposed MFMC approach facilitates excellent agreement with the high-fidelity FEM 
estimation, as expected. This is especially evident when compared to the results of Fig. 4, with the MFMC 
estimator providing for all thresholds and seismicity scenarios, excellent accuracy, close to the FEM 
estimation, even for the accelerations that were proven a great challenge earlier (results for drift even more 
consistent).  In terms of the speed-up, for [ ] 20%P EDP β> = , there is a 1.5 decrease in the computational 
time needed to gain the same level of accuracy for the top floor acceleration compared the a single MC 
estimation using evaluations from FEM. For other thresholds, and seismicity scenarios, approximately the 
same amount of speed-up is gained, even though r* does not correspond to the optimal value. Especially for 
the inter-story drift ratios, more than 2.5-times the speed-up is gained. The reason this happens is evident 
from inspecting Eq. (16). If there is a strong correlation between the FEM and ROM (which is the case for 
drifts), the latter can provide accurate information about the former and when this is coupled with a 
substantial reduction in computational time that the low-fidelity model can provide, MFMC leverages the 
low-fidelity model many times and computational efficiency is gained. If the two models are weakly 
correlated, MFMC will utilize the low-fidelity model fewer times. For all the aforementioned reasons, 
implementation of the MFMC estimation for risk predictions for structure S1 would have given greater 
speed-ups, due to the high correlation between FEM and ROM for all thresholds and seismicity scenarios. 
 

 

 

 

 

 

 

 

 

 

 
Fig.5: Comparison of CCDF curves from the high-fidelity OpenSees and the MFMC estimator 
corresponding to calibration D1 for the ROM, for structure S2. Results for selective seismicity scenarios and 
EDPs are shown. 

5. Conclusions 
The calibration of reduced order hysteretic structural models and subsequent validation in seismic loss 
estimation setting was examined in this paper. The reduced order model (ROM) was developed using data 
from the original high-fidelity FEM. Static condensation was first used to obtain the stiffness matrix for the 
dynamic degrees of freedom (DoFs) and subsequently the restoring forces corresponding to the linear 
stiffness matrix were replaced by hysteretic ones, considering hysteretic spring connecting all DoF 
combinations. Different models were discussed for describing the hysteretic forces. Calibration was 
established by comparing nonlinear time-histories to the initial structural FEM, and a sequential optimization 
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was established to accommodate the adoption of complex descriptions for the reduced order model hysteretic 
forces. Validation within the illustrative example demonstrated the ability of the proposed reduced order 
modeling framework to offer, at a substantially reduced computational cost, a good match to the nonlinear 
FEM predictions for both the response to individual excitations, but more importantly, to risk predictions 
such as the vulnerability across different EDP thresholds for inter-story drifts and accelerations. Finally, a 
multi-fidelity MC implementation was examined. It was shown that this approach can be coupled well with 
the proposed reduced order modeling scheme to establishing efficient and unbiased risk estimation using 
data from both the FEM and the ROM. 
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