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Abstract 

The classification of the building stock for risk assessment can become a great challenge as it requires a description of 

each building in terms of its capacity to resist a given hazard. When evaluating the seismic risk, the assessment requires 
a typology classification based on its capacity to resist lateral loads. Unreinforced masonry, a building typology in which 

lateral loads are sustained by masonry walls without any form of reinforcement, is highly vulnerable to earthquakes. 
While in Europe this type of building is commonly found in historical centers, in developing countries like South 

American ones, unreinforced masonry may represent a high proportion of the building stock. For example, 74% of the 
residential stock in the metropolitan area of Medellin (Colombia) is unreinforced masonry. In these cases, it is necessary 

to go beyond the mere classification as “unreinforced masonry'' by including additional characteristics such as the 
flexibility of the floor/roof diaphragms, which plays an important role in the distribution of the lateral forces to the vertical 

elements of the lateral load-resisting system. In addition, a rigid diaphragm allows the structure to have synchronized 
displacements during an earthquake. As the availability of street-level imagery becomes widespread, a great potential 

emerges to support detailed city-wide risk assessment in a cost-effective manner with image analytics. In this paper, we 
explore this potential by evaluating five state-of-the-art architectures of convolutional neural networks (CNN) to classify 
images of one-story unreinforced masonry buildings of the metropolitan area of Medellín according to the flexibility of 

the roof diaphragm. Over a thousand images were manually gathered from Google Street View and properly labeled by 
experts to feed the CNN training process. To select the best performing architecture we followed a conservative, risk-

averse approach, by minimizing the risk of classifying a flexible diaphragm as rigid on validation images (not seen during 
the training stage). In our process we (1) split the data in train/validation/test subsets, (2) train each CNN architecture on 

train data, (3) select the best according to their performance in validation data, and (4) use test data to obtain an unbiased 
performance estimation of our process as a whole. The best performing model, Vgg19, reaches an accuracy of 80%, a 

precision of 88%, and a recall of 84% on test data. The accuracy level is considerably higher for flexible diaphragms than 

for rigid diaphragms, 85% vs. 71%. We also found that there is a direct relationship between the level of certainty assigned 
by the experts when classifying an image and the probability assigned by the CNN. 
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1. Introduction 

Evaluation of the risk due to natural disasters is fundamental for disaster management as it quantifies the 

possibility of economic and human affectations in a given region. In order to assess the risk three models are 
needed: a hazard assessment that characterizes the expected physical event (e.g., earthquake, flood, fire, etc.) 

in terms of frequency and size; an exposure model that describes the characteristics of the assets (people and 

infrastructure) in the region under study; and a vulnerability model that relates the physical event intensity to 

the assets capability of sustain such forces. Each of the three aforementioned aspects is fundamental to the risk 

assessment as the reliability of the results is highly dependent on the quality of the three input models.  

This paper focuses on the exposure model for seismic risk assessment of buildings; i.e., the description 

of the buildings’ characteristics based on their capacity to resist lateral loads. More specifically, the paper 

concentrates on the classification of one-story unreinforced masonry buildings according to its roof flexibility 

(rigid or flexible diaphragm). Seismic building capacity is defined by factors such as the material and type of 

the lateral load resisting system, ductility, number of stories, date of construction, the shape of the building 
plan, etc. For example, the recent Global Earthquake Risk Model [1] classified buildings based on the material 

of the lateral load-resisting system (LLRS), the type of LLRS, the number of stories, and the building ductility. 

On the other hand, Hazus [2] building inventory classification uses the basic structural system and three 

building height subclasses (low-rise, mid-rise and high-rise). In the aforementioned studies unreinforced 

masonry buildings constitute a building classification that identifies a non-ductile structure in which the LLRS 

are masonry walls, without any type of reinforcement. This classification is, in most cases, good enough for 
the evaluation of the seismic risk. Nonetheless, in regions where this building typology represents more than 

half of the building stock, it may be desirable to include additional features—such as diaphragm flexibility—

in such a way that a better description of the building seismic capacity can be achieved. 

We consider the diaphragm flexibility a relevant characteristic as it plays an important role in the 
distribution of the lateral forces to the vertical elements of the LLRS. Furthermore, a rigid diaphragm allows 

the structure to have synchronized displacements during an earthquake, which implies a better seismic 

response. The inclusion of diaphragm flexibility as a parameter on the building exposure model requires the 

manual classification of unreinforced masonry buildings based on their diaphragm characteristics: flexible or 

rigid. To decrease the additional amount of work on the exposure model development due to the inclusion of 

the flexible/rigid diaphragm characteristic, we explore in this paper the potential of use convolutional neural 
networks (CNN) to classify street-level imagery of one-story unreinforced masonry buildings according to the 

flexibility (rigid or flexible) of the roof diaphragm. We use the Metropolitan Area of Medellín (henceforth 

referred to as Medellín) as a case study. Medellín is the second-largest conurbation of Colombia and 74% of 

its residential building stock is composed of unreinforced masonry buildings [3].  

As a first step of the present study, we manually gathered from Google Street View over one thousand 

images of one-story unreinforced masonry buildings of Medellín. Each image was labelled by experts as 

flexible or rigid roof diaphragm. Details of the database are given in section 2. The database was used for the 

evaluation of five state-of-the-art architectures of CNNs. For each architecture data was (1) split in 

train/validation subsets, (2) the CNN architecture was trained and (3) the performance was measured. We 

selected the best architecture by a conservative, risk-averse approach that consists of minimizing the risk of 
classifying a flexible diaphragm as rigid. Section 3 presents the methodology used for the selection of the best 

CNN architecture. Results of the best CNN architecture are presented in Section 4, in which its performance 

is measured in terms of statistical parameters. Finally, section 5 presents the main conclusions of this work.  

2. Unreinforced masonry buildings of Medellín and its metropolitan area: database  

Unreinforced masonry (MUR) is a building type in which walls are made of masonry without any form of 

reinforcement. Masonry refers to individual units of brick, stone, concrete block, adobe, etc. that are joint 

together by mortar. Unreinforced masonry buildings are non-ductile structures, i.e., they have a reduced 

capacity to resist lateral deformation; therefore, they should not be used in medium to high seismic hazard 

zones. Regardless of their inability to sustain seismic loads, unreinforced masonry buildings represent and 
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important percentage of the Latin America building stock. According to [4] 31% of the residential buildings 
of the Andean region of South America are MUR buildings. The percentage significantly increases for 

Medellín, in which different studies have reported the percentage of MUR buildings between 50% and 70% 

approximately [3, 5, 6]. 

When a building is subjected to an earthquake lateral loads are imposed on the structure. Such loads 

must be transmitted to the lateral load-resisting system (LLRS), which, in the case of a MUR building, is the 

unreinforced masonry walls. The horizontal system that transmits the lateral forces to the LLRS is known as a 

diaphragm which can be a roof, floor or any other type of horizontal bracing. There are two types of 

diaphragms: rigid and flexible, which are defined based on the relative stiffness of the vertical elements versus 

the horizontal elements. A rigid diaphragm is assumed to not deform itself under lateral loads, it is able to 

distribute the seismic loads to the LLRS, and it allows the structure to have synchronized displacement during 
an earthquake. On the other hand, a flexible diaphragm it is not able to distribute torsional and rotational forces 

to the LLRS. A building with a rigid diaphragm will have a better seismic performance than a building with 

flexible diaphragm. 

A seismic hazard assessment usually does not classify MUR buildings considering the type of floor/roof 

diaphragm. Nonetheless, when the percentage of MUR buildings is high, as in the study area of Medellín, it 

may be important to discriminate by the type of diaphragm as the seismic performance of a MUR building is 

highly dependent on the diaphragm flexibility. Vulnerability functions for MUR buildings of Medellín that 

include the type of diaphragm have been developed by [7]. A vulnerability function—input data for a seismic 

risk assessment—relates the expected damage with an intensity measure of the ground motion generated by 

the earthquake. The functions generated by [7] indicate a smaller vulnerability of the MUR buildings that have 

rigid diaphragms when compared to the vulnerability of MUR buildings with flexible diaphragm. 

In this paper we explore the potential use of convolutional neural networks (CNN) to classify images of 

one-story MUR buildings according to the flexibility (rigid or flexible) of the roof diaphragm. For such purpose 
we manually collected more than one thousand street-level images of one-story buildings of Medellín and La 

Estrella—a municipality of the metropolitan area of Medellín—with the use of the Google Street View 

application. Each image was labeled by experts based on its roof diaphragm as flexible or rigid. In addition, a 

confidence level was assigned to each classification, i.e., it was recorded the certainty level (100%, 75% and 

50% certainty) of the expert when defining the type of roof diaphragm of each building. The uncertainty in the 

assignation of the type of roof diaphragm arises from the fact that the classification is done based on an image 
and, therefore, there is not access to the interior of the building. Regardless such disadvantage, remote building 

surveys have been used for the development of seismic exposure models [3, 8] and it has become a useful tool 

that reduces the amount of resources involved in the development of such models.  

The database includes a total of 1,122 images distributed as 745 of buildings with flexible diaphragm 

(66% of the total) and 377 buildings with rigid diaphragm (34% of the total). The unbalanced number of 

buildings of each category reflects the building type distribution in the city: it is usual that a one-story MUR 

building with a rigid diaphragm will evolve in a building with two or more number of stories; therefore, it is 

more common to find one-story buildings with flexible diaphragm. Fig. 1 presents the distribution of the 

surveyed buildings of the database as well as examples of buildings with flexible and rigid diaphragm. 
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Fig. 1 – Distribution of survived buildings and examples of roof diaphragm type. Triangles: rigid diaphragm; 

circles: flexible diaphragm. Label color indicates expert certainty level (green: 100% certainty; yellow: 75% 

certainty; red: 50% certainty) 

3. Deep learning  

In the last decade, Deep Learning methods have considerably improved the state-of-the-art in several 

perceptual challenges, particularly for computer vision problems [9]. These models learn specific image 

features directly from training data without the need for hand-engineered features. The CNN is a specialized 
deep learning algorithm that exploits spatial or time correlation in the data [10]. In a CNN, images pass through 

consecutive layers arranged in a hierarchical system, as the image moves forward through the network, the 

most optimal features are learned and used to classify an image, recognize objects, etc. The architecture of a 

CNN (Fig. 2) consists of multiple combinations of convolutional layers and pooling layers followed by 

supporting or regulatory units (such as dropout, batch-normalization, etc.). 

 

 

 

Fig. 2 – Example of a CNN Architecture 
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The Convolutional layer is composed of a set of kernels, each one convolves on the images using a small 

receptive field and are activated when a specific feature pattern has been found in the image [10]. Pooling 

layers extract a combination of features which are invariant to translations and small distortions, while reducing 

the number of parameters and complexity in the network. Finally, the network is completed with fully-

connected layers (FC), these learn non-linear combinations of the high-level features as represented by the 

output of the convolutional layer, which are then used for the classification of data. CNNs learn hierarchies of 

visual features (Fig. 3), from simple visual primitives (edges, gradients, borders) in earlier layers of the 

network, to complex high-level features in later layers. These richer features are composed using combinations 

of basic structures from previous layers as building blocks. 

 

Fig. 3 – Example of hierarchical features 

Other than simulation-based approaches (see [11, 12]) and classical statistical or modeling methods [13, 

14, 15], there has been little use of machine learning methods for seismic risk assessment. Certain machine 

learning approaches have been based on applying standard algorithms to data acquired from sensors or 

databases (public registries, etc.) such as the works in [16, 17, 18]. However, various image processing 
approaches have been proposed in related areas, including earthquake damage estimation [19], exposure 

estimation [20, 21], landslide risk assessment [22], etc. Nevertheless, the vast majority of these approaches are 

based on satellite imagery. CNN’s are starting to be used (although timidly) in this field. For instance, in [23], 

a CNN was used to process ground velocity records to detect earthquakes. Nonetheless, CNN’s have been used 

to extract information and classify Google Street View images, including street number recognition [24], traffic 

sign recognition [25], number of building stories [26], and to estimate neighborhood demographic composition 

[27]. 

3.1 Network Architectures and Model Training 

In this work, we consider five state-of-the-art CNN networks with different levels of architecture complexity 

(see Fig. 4). These networks have presented excellent performances on large scale classification challenges, 

such as Imagenet with over 1.5 Million images and 1000 classes [28]: VGG16, VGG19, InceptionV3, 

ResNet50 and Xception. In Vgg16 and Vgg19 images are passed through a stack of convolutional layers using 

filters with a very small receptive field, which reduces the number of parameters on the network, while 
increasing depth in the network. These networks have 16 and 19 weight layers respectively [29]. InceptionV3 

sacrifices the architecture simplicity from Vgg16/Vgg19 to obtain significant reductions in computational cost 

while managing state-of-the-art performance in image classification tasks. To achieve this goal the Inception 

module is introduced, which is a block of very small filters at different sizes to capture meaningful features at 

different scales. A sequence of convolutional layers followed by several Inception modules using different 

filter sizes comprise the 48 layers in the network [30]. As the number of layers in the network increases, they 
tend to present a vanishing gradient problem where earlier layers in the network learn in a slow -paced manner 

compared to later layers in the network. This problem increases the training time and diminishes the prediction 

accuracy of the model, ResNet50 manages this by using shortcut connections between blocks of convolutional 

layers to allow gradient information being transmitted further down the network. This network has 50 weight 

layers, as the name suggests [31]. Finally, Xception builds on the previous architectures presented and 

9b-0001 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9b-0001 -



17th World Conference on Earthquake Engineering, 17WCEE  

Sendai, Japan - September 13th to 18th 2020  

  

6 

introduces a two-step convolution where a spatial convolution is performed independently for channel in the 

image, followed by a 1x1 convolution across all the channels. This network is 71 layers deep [32]. 

Since these architectures have been pretrained on Imagenet, we are able to use transfer-learning to 

improve generalization performance on our classification task [33]. This technique consists of reusing generic 
features learnt on earlier layers in the network, while retraining later layers to learn more specific filters related 

to our dataset.  

 

 

Fig. 4 – From left to right, Architectures of Vgg16, Vgg19, Xception, Resnet50 and InceptionV3. Adapted 

from [34] 

 

3.2 Experimental methodology 

Our aim is to develop a method capable of classifying a street level image of a building according to the 

presence of a rigid or flexible diaphragm structure. We believe that a good classifier, deployed under a suitable 

platform (i.e., a mobile phone) would reduce the cost and democratize risk assessment across wider population 

areas and segments. As in any predictive modelling task, care must be taken to device the experimental 

methodology so that it is statistically sound and we do not incur in selection biases and reduce the risk of 

obtaining unrealistic performance estimates (too optimistic or too pessimistic).  

Overall our process consists of five steps: (1) split the dataset; (2) define what performance metrics are 

most suitable to assess the models; (3) use specific dataset splits to train a variety of CNN architectures and 

select the best performing CNN; (4) use the remaining splits to obtain an unbiased estimate of the performance; 

and (5) inspect CNN internals as an attempt to understand the visual structures that most influence the CNNs 

in their decision. 

We split our dataset in three parts: train (60%), validation (20%) and test (20%). This split is made in a 

stratified manner, such that the class proportions are maintained in all splits. We then train with fine tuning 
(see above) each one of the selected architectures using the train split and measure its performance using the 

train and validation splits. This performance is measured in terms of accuracy (percentage of correct model 

predictions), precision and recall (see next section), which overall allow us to assess how well models are 
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distinguishing both image classes (flexible and rigid). The validation split has not been seen by the training 
procedure and thus measures the generalization capabilities of each CNN model with unseen data. The 

difference in train and validation performances allows us to assess other aspects of the procedure itself, such 

as if the CNN models overfit (i.e., “memorized” part of the data instead of finding distinctive image features 

that can be used on new images). Finally, we select the best performing CNN model according to the validation 

split, but we use the test split to report performance. This avoids selection bias [35], this is, the data used to 

assess the overall process performance should not have been used in any processing stage,  neither training nor 

model selection. 

3.3 Performance metrics 

In this paper we use three performance metrics: precision, recall and accuracy. For a better explanation of our 

performance measures, we will present the confusion matrix in Table 1. Precision is a measure of exactness 

calculated as the percentage of buildings classified by a model as having flexible diaphragm that were correct 

(i.e., TP/(TP+FP)). Recall is a measure of completeness calculated as the percentage of building with flexible 

diaphragm that were correctly identified as such (i.e., TP/(TP+FN)). Finally, accuracy is calculated as the 
percentage of buildings that were correctly classified (i.e., (TP+TN)/(TP+TN+FP+FN)). It is a widespread 

overall performance metric but must be used with care especially with imbalanced data. Observe that, in our 

case, we have 66% flexible diaphragms and 34% of rigid diaphragms, and that a dumb classifier that labels  

every image as flexible will attain 66% accuracy (100% in flexible and 0% in rigid). This would be very 

different from a 66% accuracy that shows evenly in both classes. This is the reason by which it must be 

interpreted with complementary metrics, such as precision and recall in this case.  

Table 1 – Elements of a confusion matrix 

Result Actual Class: flexible Actual Class: rigid 

Predicted class: flexible True Positive (TP) False Positive (FP) 

Predicted class:  rigid False Negative (FN) True Negative (TN) 

 4. Analysis of results 

Table 2 presents the performance metrics for the validation and test datasets. Recall that to avoid biases we 

use performance on the validation set to select which model to use, and performance on the test set to report 

the performance on the selected model and decision making. According to this we select Vgg19 as the best 
model, since it in validation has outstanding recall performance (0.83) and accuracy (0.84) with respect to the 

rest, and still precision is second best (0.92). For decision making (for instance, when assessing whether it is 

worthwhile or cost-effective to introduce the model in a production environment or application), we use the 

performance of the selected architecture on the test set (0.88 precision, 0.84 performance, 0.80 accuracy).  

Figures 5a and 5b present two complementary versions of confusion matrices. Fig. 5a presents the 

overall magnitude of correct and incorrect predictions with respect to the total population (i.e., the entire matrix 

adds up to 100%). The results indicate that 80% of the images are correctly classified and the remaining 20% 

mistakenly classified images are evenly distributed between false positives and false negatives. Fig. 5b focuses 

on accuracy per class by presenting a version of the confusion matrix in which each row adds up to 100%. The 
results show that the accuracy level is considerably higher for flexible diaphragms than for rigid diaphragms, 

85% vs. 71%, this difference may be a consequence of having a considerably higher number of buildings with 

flexible diaphragms that those with rigid diaphragm. 
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Table 2 – Performance metrics 

 Validation Dataset Test Dataset 

Network  Precision Recall Accuracy Precision Recall Accuracy 

Vgg16 0.97 0.68 0.77 0.92 0.73 0.77 

Vgg19 0.92 0.83 0.84 0.88 0.84 0.80 

InceptionV3 0.83 0.72 0.71 0.88 0.79 0.78 

Xception 0.90 0.76 0.77 0.88 0.83 0.80 

Resnet50 0.92 0.56 0.66 0.85 0.52 0.60 

 

The similarity between the performance metrics obtained in the validation and test databases is also 
significant, as it signals the fact that both datasets are equally representative of our underlying buildings 

distribution and reduces the risk of selection bias. 

 

 

Fig. 5 – Confusion matrix for selected architecture (Vgg19). a) Distribution based on the total number of 

buildings (all the values add to 100%), b) Distribution based on the building class (each row adds to 100%) 

 

As we pointed out in Section 2, each expert assigned a certainty level of 100%, 75%, or 50% when 

classifying each image. On the other hand, in each classification the CNN assigns a probability of belonging 

to each of the possible categories (i.e., flexible, rigid), thus, an image is classified as flexible if the probability 
assigned to that category is the highest. Taking the category of flexible diaphragm as a reference, Fig. 6 

presents a comparison between the level of certainty of the human vs. the probability assigned by CNN. Note 

that, although the level of certainty assigned by the expert is not taken into account in any part of the 

classification process, there is a direct relationship between the two measures when the probability of certainty 

of the expert is greater than or equal to 25%.   

However, when the expert is confident about a rigid classification (left side of Fig. 6, the probability of 

flexible is close to 0%, which means a probability of rigid assigned by the expert close to 100%) our model is 
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most confused (leftmost blue bar in the figure around 40%). We believe this signals the fact that we have an 
unbalanced dataset with twice fewer rigid examples than flexible ones. Therefore, the model has not been 

given the chance to properly generalize what visual features are mostly associated to rigid structures and, thus, 

being more unsure when classifying an image as such. 

 

 

Fig. 6 – Comparison of the building probability of being flexible assigned by expert and the network 

5. Conclusions 

In this paper we explore the potential of CNN for classifying street-level imagery of one-story unreinforced 

masonry buildings according to the flexibility (rigid or flexible) of the roof diaphragm. For this exercise we 
used 1,122 images from the Metropolitan Area of Medellín. Each image was labeled by experts as flexible or 

rigid roof diaphragm.  

The results show that Vgg19 is the best architecture for the problem of diaphragm classification, with 
an accuracy of 0.80, a precision of 0.88, and a recall of 0.84. According to the confusion matrices, 80% of the 

images are correctly classified and the accuracy level is considerably higher for flexible diaphragms than for 

rigid diaphragms, 85% vs. 71%. We also found that there is a direct relationship between the level of certainty 

assigned by the experts when classifying an image and the probability assigned by the CNN. This highly 

automated method stands out as a good candidate to offer a fast and inexpensive way to build an exposure 

model for seismic risk assessment of one-story unreinforced masonry buildings. Moreover, we believe that 

more accurate results could be obtained if additional information from satellite images (such as roof type) are 

considered into the building classification. We will explore this possibility in further analyses.  

Results show that the identification of the buildings with rigid diaphragm is not as accurate as the one 

for buildings with flexible diaphragm. Upcoming work will concentrate on increasing the number of images 
with rigid diaphragm in the database in order to improve the machine learning process for such building 

category. In addition, we believe that the learning process can be improved if images with external objects 

such as vegetation, signs, vehicles, etc. are not included in the training process. For such purpose, a process 

could be implemented to remove objects that may generate a distraction to the machine. Another option worth 

exploring is the use of eye-tracking devices to identify those areas of the image considered by the expert when 

classifying an image and then fit this information into the CNN. This will allow minimizing the influence of 

external objects without having to remove them. 

We are encouraged by the results to extend the methodology to buildings with two or more number of 

stories. For such buildings an interesting feature that could also be considered in addition to the identification 

of the flexibility of the floor(s) and roof diaphragm is the presence of different lateral load-resisting systems 
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in the building, a situation that takes place due to informal construction processes in which stories are added 

to existing buildings without following construction best practices. 
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