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Abstract 

A critical task, after an earthquake, is determining the extent of damage to civil infrastructure. Nowadays every time there 

is a seismic event, large amounts of images are uploaded to the internet. In the past, these images would have been 

reviewed by trained volunteers or expert engineers to evaluate what kind of damage is shown. The manual review of large 

image-sets for assessing damage has shown to be inefficient and, in cases, error-prone.  

To speed up the process new computer vision algorithms are being proposed to automatically label the images for 

structural damages. Specifically, a deep learning approach using Convolutional Neural Networks (CNN) is proposed. 

Supervised CNN classify raw input data according to the patterns learned from an input training set. This training set is 

typically obtained by manually labeling images which can lead to uncertainties in the data. The level of expertise of the 

professionals labeling the training set sometimes varies widely or some of the images may not be clear and are difficult 

to label. This leads to data sets with pictures labeled differently by different experts or uncertainty in the experts’ opinions. 

Why measuring the uncertainty in CNN matters? Traditional CNN are trained to produce specific outcomes by optimizing 

a set of tunable parameters, the optimization is typically carried out using some form of gradient descent. For example, 

a CNN can be trained with labeled images of dogs and spiders. During the inference (deployment after training) the CNN 

will be able to automatically label new images of dogs and spiders. But what happens if during inference we feed the 

network the image of a cow? It will classify the image as a dog with high probability, since a CNN output predictive 

probability is just the probability with respect to the other labels, and a dog label is more probable then a spider. The 

CNN output predictive probabilities are often erroneously interpreted as model confidence. A CNN can be uncertain in 

its prediction even with a high SofMax probability output.  

Uncertainty on the training set happens more frequently when the CNN task is to classify numerous labels with similar 

characteristics, as in our case when labeling damages on civil infrastructures after an earthquake. There are more than 

two hundred different label combinations and the experts labeling the sets frequently disagree on which one to use.  

In this paper, we use probabilistic analysis to evaluate the uncertainty of the labels in the training set, these uncertainties 

will be used to “fuzzy” the output of the CNN. This will allow the computer classification to determine both the label and 

the uncertainty of the matching of that label. This way if a model returns a result with high uncertainty, we can decide to 

pass the input to a human for classification, instead of returning a completely wrong and potentially dangerous label. To 

prove the validity of our solutions we will test it on our dataset of images presenting shear damage-short column.  

Keywords: Neural Networks, Belief Network, Probability Density Function, Structural Damage Classification. 
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1. Introduction 

Advances in technology, particularly smart phones, have facilitated widespread image data collection 

and immediate dissemination following a seismic event. The amount of data generated by a single 

major seismic event can be staggering and the responsibility for a few human data-gatherers to locate, 

identify, organize, and summarize the damage information in a meaningful, timely, and efficient 

manner is challenging.  There have been several efforts [2]-[7] to automate virtual post-earthquake 

reconnaissance activities by training a computer algorithm to classify images based on Convolutional 

Neural Networks.  

In [5] Feng et al. attempts to address the challenge of having an adequately large, expertly tagged 

image training set. The research team developed a deep residual neural network to maximize 

performance of a detection algorithm for civil infrastructure that targets four defects in an input image 

patch: cracking, deposit, water leakage, or any combination of the previous defects. In [7] Yeum 

developed a convolutional neural network algorithm to recognize post-hazard structural damage in 

reconnaissance images. The damage classifications were collapse-no collapse (binary) and concrete 

spalling/flaking (bounding box). In [1]-[3] we developed a convolutional neural network for 

automatic damage classification on images after earthquakes. 

Although the above research presents successes of CNN for earthquake image classification; still 

CNN can easily be fooled [17] giving high confidence predictions for unrecognizable images. The 

problem with uncertainty results on CNN has been previously studied. [9] Sun et al., uses Bayesian 

learning to quantify posterior uncertainty on deep neural networks (DNN) models parameters; 

considering the matrix variate Gaussian to develop a scalable Bayesian outline inference algorithm 

by adopting a probabilistic backpropagation framework and stochastic gradient Markov Chain Monte 

Carlo (MCMC) on synthetic data. Kendall and Gal [10] analyzes the different kinds of uncertainty in 

the model and focus its work on the importance of adding aleatoric uncertainty (uncertainty due to 

statistical variations than cannot be predicted a priori) to the model, and proposes the use of Bayesian 

Neural Network  for computer vision tasks improving 1-3% the model performance. Gal and 

Ghahramani [11] analyzes Neural Networks (NN) model certainty. In the paper they prove that the 

dropout layer can be used as a Bayesian approximation of a well-known probabilistic model, the 

Gaussian process.  The paper uses these outputs to determine the model uncertainty and propose to 

pass the input to a human for classification if the output has high uncertainty.  Deceus [12] proposes 

the use of belief functions to represent imprecise and or uncertain knowledge of class labels (soft 

labels) and proposed changes to common clustering algorithms to adapt to these types of labels, 

presenting result on synthetic data. Kendall et al. [20] presents a version of the segmentation 

algorithm SegNet that also outputs the uncertainty of the segmentation regions and is used for 

segmentation of street scenes. The authors provide as an output the uncertainty on each frame for the 

segmentation enabling users to decide on actions if the uncertainty is high. In general Bayesian Neural 

Networks (BNN) do not have fixed weights for the neurons but a distribution, quantifying the 

uncertainty in a NN which allows to find images for which the net is unsure of their prediction, but 

several experiments with BNN [14] show that they also provide a high level of certainty for out of 

distribution test data and require long training times.  The study concludes that a Bayesian neural 

network with Monte Carlo dropout is too crude of an approximation to accurately capture the 

uncertainty information when dealing with image data.  

In our previous paper, Pantoja et al. [1], we analyzed the problem in a different way than a BNN and 

instead of adding a probability distribution to the weights of the neurons we ask the individual expert 

for their certainty in labeling the images. Then through statistical and probabilistic analysis using 
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belief networks [15] we spread the CNN's predictive output over a range of values reflecting the 

expert's own self-certainty. The work presented in [1] mainly explains the mathematical methodology 

to evaluate the certainty of the model, the results were obtained using synthetic data. In this paper, 

we will evaluate the validity of the model on real data provided by the architecture department, 

specifically tagging damage after an earthquake on short columns. This way if a model returns a result 

with high uncertainty, we can decide to pass the input to a human for classification, instead of 

returning a completely wrong and potentially dangerous label. In Figure 1 we present an example of 

two different experts labeling the same image. It can be seen that there are clear differences. 

  

Figure 1. Two Experts Labeling Same Image 

 

The article is structured as follows. In section 2 we give an overview of the implementation’s details, 

first explaining what CNN for image classification is, then explaining certainty analysis. In section 3 

we present our results, and sections 4 and 5 are analysis and conclusions.  

2. Implementation 
In this section, we explain how to evaluate the uncertainty of the labels created by the experts. We 

will start by giving a brief overview of Deep Learning algorithms and will follow with the 

mathematical theory behind our solution to evaluate the quality of the experts’ labels. 

2.1 CNN for Image classification 

Deep learning algorithms are loosely based on biological neural systems where an individual neuron 

executes a very simple operation and sends the output signal to the rest of the neurons. One neuron 

does very little, but as a network they can perform extremely complex tasks. In computer science, 

neurons are simulated as simple software functions connected in groups (layers) by simple passing 

input/output arguments with varying weights assigned to each function. An interconnected layer 

performs a simple feature extraction to identify one higher-level feature in the image and by 

connecting many layers it is possible to identify entire objects in an image. DL can model very 

complex inputs which allows researchers to shift from problem dependent feature extraction to a more 

general DL algorithm.  
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Figure 2. Flowchart for classifying reinforced concrete building damage. 

 

Development of CNNs involves two stages: (i) training on a set “ground truth” images that contain 

data known to be correctly classified and determining the optimal weight for the neurons, and (ii) 

deploying the NN using the learned weights from the training stage to classify a new image.  

The steps to develop a DL algorithm in damage-structure pair detection are as follows (refer to Figure 

2):  

1. Gather input images.  

2. Manually tag the images. To store the rectangle coordinates and associated labels using an 

image labeling tool (there are several on the internet that can serve this purpose). The resulting 

set of manually tagged images becomes the “ground truth”.  

3. Train: The training starts with each neuron initialized to a certain weight, and subsequent 

iterations (epochs) consist of:  

(i) calculating the error/loss function with respect to the validation image set,  

(ii) modifying the neuron weights to correct for the calculated error using an 

optimization approach such as gradient descent, and  

(iii) re-training using the new weights. The iterations continue until the DL 

algorithm begins to converge and a satisfactory validation accuracy is 

achieved.  

4. Deploy: Once a satisfactory accuracy for detecting a specific damage-structure pair has been 

reached, the NN can be used to identify the same features in a completely new set of images.  

More detail about how to use DL for earthquake damage image classifications in our articles in [1]-

[3]. 

  

2.2 Summary of the Uncertainty Analysis  
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Here we present a summary of the uncertainty analysis; a detailed explanation of the theory can be 

found in [1]. For the complete collection of photos evaluated by expert E, the success percentage is 

computed by forming the ratio of the total number of agreements found over all photographs 

examined by the expert to the total number of identifications (agreements, omissions, and additions) 

made by the expert. This ratio is the success proportion, 𝑝 ̃, and is given by 

 

𝑝̃ =
𝑆

𝑀
=

∑ 𝑐∅∅

∑ 𝑒∅ + 𝑡∅ − 𝑐∅∅
 

 

where S is the total number of agreements between E and the truth set and M is the total number of 

identifications made by E and the truth set (the sums are taken over all images examined by the expert 

E).  For each image (call it ∅), let 𝑒∅ , 𝑡∅ , 𝑐∅  represent, respectively, the total number of labels 

identified by the expert, the total number of labels identified by the truth set, and the total number of 

labels common to both the expert and the truth set.   

 

The proportion of successes 𝑝̃  is known to be a good estimate of the probability, p, that the 

expert E assigns a correct label to a photo. To estimate statistically how close 𝑝̃ is to p, a confidence 

interval, [L, R], is constructed around the parameter p.  The natural confidence interval to be used is 

that for a proportion: well-known and given by the interval 

 

 
 

The confidence level, 1-𝛼  is the probability to be assigned (in this analysis) to the truth of the 

statement: L  p  R. The base of the triangular distribution function for V  (the certitude that image 

phi possesses label L) is found by scaling the interval [L, R] by V* (the expert's self-assessment). That 

is the endpoints of the base of the triangle are given by a = V*L and b = V*R.  It is also desired to 

keep 0 < V*L < V*R < 1. Therefore, set a = 0 if V*L < 0, set b = 1 if 1 < V*R.  In summary: 

 
To make this triangular function into a density function, the area under this triangle must equal one.  

Therefore, the height of the triangle must be 2/(b-a). Outside of this triangle the density function is 

zero.   

Let’s explain all this with a numerical example were we have two experts evaluate the same set 

of photos. Table 1 presents a numerical example of how to evaluate the quality of these two experts 

assigning labels to two different photos. The label name indicates a damage/structure type and its 

location, for example: “shear flexture Short column 4 100 190 300”, where the four numbers at the 

end indicate the x-y coordinates of the rectangle in the photo that contains damage of the type shear 
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flexure.  This indicates that different damages names with same locations will be consider different 

labels.  The data in Table 1 represent a case in which two experts have evaluated  two photographs 

and attached up to three labels (called A, B, and C) to each. Out of these values it is now possible to 

determine the shape of each of the certainty functions, a summary of the calculation can be found in 

Table 2.  The certainty functions are denoted as 

 

fL,E,(l) . 

 

To ease the notation here this form will be abbreviated to fL,E, corresponding to identifiers l: label, 

: photograph, and E: expert.  Note that for these intervals, a confidence level of 0.05 was assumed. 

The first rows in Table I are the labels assigned by experts to a specific photo. We compare them to 

the ground truth value found on the third column of same Table I. The next rows are the calculations 

for the width and height of the certainty density function. Table II shows the calculations for density 

functions, the graph of the values in Table II are represented in Figure 3. 

 

Table I. Representative Classification 

 
 

Table II. Distribution Functions 
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Figure 3. Experts Density Function Shapes (for Photo 1):fl,e,1 

 

The certainty functions fl,e,1 obtained from the values for Photo 1 (stated in Table 1) are represented 

in Figure 3. It can be seen that the certainty functions associated with expert 1 are triangular and wider 

while the certainty functions associated with expert 2 are impulsive. This is due to the fact that expert 

1 made several mistakes in assigning labels (compared to the truth set) while expert 2 is not only 

certain about the labels but has also made correct assignment. 

3. Results 

3.1 Automatic Detection of “Shear Damage”  

To test the implementation, a set of “ground truth” images were utilized the specific damage-

structural member pair of shear damage to a short/captive column. The DL algorithm’s accuracy for 

drawing a bounding box around short/captive columns with shear damage is 77% with an input 

training set of only 200 “ground truth” images. Figure 6 presents a few examples of images the 

algorithm correctly tagged for this damage type. The low number of images on the ground truth 

training set is the main reason for the relatively low accuracy of the model. Nevertheless, the current 

level of accuracy is rather promising and indicates that with a larger set of training images labeled by 

at least two experts, the DL algorithm’s tagging performance would be comparable to a human expert. 

More details about this results can be found in [2]. 

 

 

Figure 6. Bounding box classification results: shear damage to short/captive column.  
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3.2 Automatic Detection “Shear Damage” with uncertainty analysis 

We did run algorithm as in 3.1 but this time we added also the confidence information of the 

experts labeling the training set. An example of the data is presented in Table III. Column “DL 

Output” contains the value for the softmax output layer of the DL model (explained in Section 

2.1, 3.1); Columns “Expert 1”  and “Expert 2” contain the certainty self-evaluation of the expert 

1 and 2 respectively, and column “Ground Truth” contain the value for the ground truth (the real 

value of the label confirmed by infield evaluation); for this sample the ground truth confirms the 

exitance of the label on all images.  

Applying calculations described in section 2.1 the 𝑝̃ for Expert 1 is 0.6 and for Expert 2 is 0.3; 

so it is very clear that Expert 1 is more often correct and should be given in general more weight 

on the training set since the quality of its labels is higher. 

Table III. Input for the Certainty Analysis 

Image 

Number DL Output Expert 1 Expert 2  Ground Truth 

1 0.8 Definitely Probably yes 

2 0.9 Definitely Probably yes 

3 0.9 Definitely Definitely yes 

4 0.9 Probably maybe yes 

5 0.8 Definitely definitely yes 

6 0.6 Probably Maybe yes 

7 0.8 Definitely most probably yes 

8 0.9 Probably definitely yes 

9 0.8 Definitely probably yes 

10 0.7 Definitely Maybe yes 

11 0.8 Probably Maybe yes 

12 0.6 Maybe Maybe yes 

 

Evaluating the quality of the expert is very important but on this paper we wanted to go further 

and use probabilistic analysis to evaluate the uncertainty of the labels in the training set, these 

uncertainties will be used to “fuzzy” the output of the CNN. This will allow the computer 

classification to determine both the label and the uncertainty of the matching of that label. In 

Table III, we know that column “DL Output” presents the output of the Softmax, we also know 

the label “Shear Flexture Short Column” is correct since the ground truth confirms it, therefore in 

theory all softmax outputs should be high (closer to 1.0). If the experts are not certain of the label 

these softmax value should be “fuzzied” (given a range) out. For example, for Image 12 (Row 12 

on Table III) the DL output is 0.6, the ground truth confirms the label is there, Expert1 certainty 

is only “Probably” and Expert 2 is “Maybe”; in both cases the certainty should have been 

“Definitely”. These uncertainty in both experts should fuzzy out the DL Output softmax. The 

results of the certainty analysis can be seen in Table IV and in Figure 7. Figure 7 present the 

output we create for the DL after applying the uncertainty analysis in Section 2.1 as expected the 
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output is of the DL is made wider lowering the value for the Softmax since the experts where not 

so sure of the label.   

 

Figure 7. Certitude Function 

 

Table IV. Image 12 Certitude Function Parameters 

Image # NN Prob Expert 1 Expert 2 Truth Expert 1

Total Quality

Expert 2

Total Quality

12 0.6 Maybe Maybe yes 0.6 0.32

Mean 0.03466

Calculated from Certitude Function : Variance 2.23E-05

St Dev 0.004719  

4. Conclusions 

The goal of the project is to develop a DL algorithm that will enable professional structural engineers 

to automatically label images for damage-structural member pairs commonly observed in civil 

infrastructure after earthquakes. Output images would have additional metadata that includes the 

damage-structural member types and locations in the images, which would enable large structural 

reconnaissance image repositories to become searchable using specific terms. Current results show 

that a DL solution to classified damage/structure patterns is possible and as more images become 

available for training, the system it will be able to classify more complex labels.  

Since we do greatly need experts to classify the training images, we need to evaluate and validate 

the experts before training algorithms. In this work we present a methodology that works on adding 

the certainty to the data, providing a more accurate output of the DL since now is not a yes/no the 

damage is on the image but also a certainty of the classification. 
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5. Further Work 

The future of image recognition in civil infrastructure should be based on computer vision. This will 

not be a substitute for the knowledge of expert structural engineers; rather, it would facilitate their 

more rapid and targeted analysis of the important qualitative data found in reconnaissance images. 

By presenting experts with a filtered set of images, they would be able to concentrate their efforts. 

The classification of images taken after earthquakes is a very complex task and we need more data 

properly labeled to be able to provide accurate classifications, in the future we plan to expand our 

work to different labels and experts classifying the labels. 

 

6. References 
[1] Pantoja M, Kleinhenz R., and Fabris D. (2019): Adding Probabilistic Certainty to Improve Performance 

of Convolutional Neural Networks, CARLA High Performance Computer Conference Latin America , 

September 25-28, Turrialba, Costa Rica.  

[2]  Patterson B, Leone G, Pantoja M, Behrouzi A (2018): Deep learning for automated image classification 

of seismic damage to built infrastructure. Proceedings of the 11th National Conference in Earthquake 

Engineering, Los Angeles, CA, USA. 

[3] Pantoja M, Fabris D., Behrouzi A (2018): Deep Learning Basic Overview. Concrete International 

Magazine, 40 (9), 35-41. 

[4] Brilakis I, German S, and Zhu Z. Visual pattern recognition models for remote sensing of civil 

infrastructure. Journal of Computing in Civil Engineering 2011, (25) 5, 388-393.  

[5] Feng C, Liu MY, Kao CC, Lee TY, (2017): Deep active learning for civil infrastructure defect detection 

classification. ASCE International Workshop on Computing in Civil Engineering, Seattle, USA.  

[6] He Z, Zhang X, Ren X, Sun J. (2015): Deep residual learning for image recognition. IEEE Conference on 
Computer Vision and Pattern Recognition, Boston, USA.  

[7] Yeum, CM. Computer vision-based structural assessment exploiting large volumes of images. PhD Thesis, 

Purdue University 2016.  

[8] Tesla Crash Preliminary Report US department of transportation NHTSA PE 16-007 (2017). 

[9] Sun S, Chen C, and Carin L (2017): Learning Structured Weight Uncertainty in Bayesian Neural Networks. 
Proceedings of the 20th International Conference on Artificial Intelligence and Statistics (AISTATS) Fort 

Lauderdale, Florida, USA. JMLR: W&CP volume 54 

[10] Kendall A, and Gal Y (2017): What uncertainties do we need in Bayesian Deep Learning for Computer 

Vision. NIPS  https://arxiv.org/abs/1703.04977  

[11] Gal Y, and Ghahramani Z. (2016): Dropout as a Bayesian Approximation:  Representing Model 

Uncertainty in Deep Learning. Proceedings of the 33rd International Conference on Machine Learning 

PMLR 48:1050-1059. 

[12] Deceus T. (2009): Handling Imprecise and Uncertain Class Labels in Classification and Clustering. 

Bayesian Deep Learning COST Action IC 0702 Working group C, Mallorca, Spain. 

[13] Gal Y (2015): What my Deep Learning model Doesn’t know. Personal blog. 

[14] Hackerman D (1992): The Certainty-Factor Model. Encyclopedia of Artificial Intelligence Second 

Edition Wiley, New York pp. 131-138 

[15] Pearl J (1998): Probabilistic Reasoning in Intelligent Systems: Networks of Plausible Inference. Morgan 

Kaufmann San Mateo CA 

[16] Klir G, Yuan B (1996): Fuzzy Sets, Fuzzy Logic, and Fuzzy Systems Selected Papers, Advances in 

Fuzzy Systems Applications and Theory Vol 6 World Scientific. 

[17] Knuth D (1998): The Art of Computer Programming, Vol 2, Section 4.3.3, pp 290-295 

[18] Press WH, Teukolsky SA, Vetterling WT, and Flannery BP, (1986): Numerical Recipes in C, Section 

8.10, pp 329-343.  

.
9c-0001

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0001 -

https://arxiv.org/abs/1703.04977


17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

11 

[19] Silver, D., Schrittwieser, J., Simonyan, K. et al. Mastering the game of Go without human 

knowledge. Nature 550, 354–359 (2017). https://doi.org/10.1038/nature24270 

[20] Kendall A, Badrinarayanan V, and Cipolla R (2015): Bayesian SegNet: Model Uncertainty in Deep 

Convolutional Encoder-Decoder Architectures for Scene Understanding. CoRR, 

http://arxiv.org/abs/1511.02680, 

[21] Weideman H.  (2016): Quantifying Uncertainty in Neural Networks. 

https://hjweide.github.io/quantifying-uncertainty-in-neural-networks . 

[22] Avis D, and Fukuda K (1992): A Pivoting Algorithm for Convex Hulls and Vertex Enumeration of 

Arrangements and Polyhedra. Discrete & Computational Geometry, 8 (3), 295–313 

[23] Liu W, Dragomir A, Dumitru E, Christian S, Scott R, Cheng-Yang F, Berg (2016): SSD Single Shot 

MultiBox Detector. Proceedings of the European Conference on Computer Vision. 

[24] github:https://github.com/mpantoja314/ImageTagVER 

 

 
 

.
9c-0001

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0001 -

https://hjweide.github.io/quantifying-uncertainty-in-neural-networks

	1.  Introduction
	2. Implementation
	3. Results
	4. Conclusions
	5. Further Work
	6. References

