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Abstract 
Spatial distribution of earthquake ground motion is important for seismic disaster risk management. However, installation 
of seismometers with high density is quite expensive. In this study, we propose a deep learning model which estimates 
real-time seismic intensity at a location without seismometer. Real-time seismic intensity is time-series data, which is a 
widely recognized as earthquake ground motion index in Japan. In advance, a seismometer need to be installed for the 
training of the model. The seismometer can then be installed for the training of other locations. The model consists of 
Long short-term memory network (LSTM), which is used for machine learning of time-series data like speech recognition 
and sentence translations. We used 2594 events observed from 2000 to 2019 at 5 K-NET stations (FKSH10, FKSH12, 
IBR003, TCGH16, IBRH12) in the Kanto and Tohoku district of Japan, which are being operated by National Research 
Institute for Earth Science and Disaster Prevention (NIED). 70%, 10% and 20% of the events were used for training, 
validation and test. The accuracy of our model, approximately 75% of test data is successfully classified into seismic 
intensity scales, which is better than adopting the nearest data and the maximum record of 11 stations within 30km. This 
suggests that the deep learning model can estimate the real-time seismic intensity with high accuracy. We concluded that 
our method may contribute to improving the accuracy of the earthquake early warning. 
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1. Introduction 
Spatial distribution of seismic intensity during and immediately after an earthquake plays an important role in 
earthquake risk management. After an earthquake occurs, government needs to build up a plan for emergency 
rescue and disaster recovery, and companies need action to recover or conduct possible operations based on 
their business continuity plans (BCP) [1,2]. The spatial distribution of seismic intensity has been utilized to 
meet these objectives [3,4]. 

The simplest way to obtain the spatial distribution is to permanently install dense array of seismometers 
in a target area. However, in practice, seismometers are installed in sparse arrays due to economic reasons. 
Conventional method to obtain the seismic intensity distribution utilizes interpolation of ground motion 
records from sparse arrays. The interpolation is based on densely available geological data, such as borehole 
data (SPT, velocity logging, etc.) [5,6], and geomorphological data (elevation, slope angles, etc.) [7]. However, 
the accuracy depends on the regression coefficient between the geological data and ground motion records. 
The accuracy can improve if the geological data increase, but it will also increase the operation cost 
significantly.  

In this study, we address the issue of obtaining acceptable spatial seismic intensity distribution from a 
sparse seismic array by using deep learning without any geological information. Deep learning belongs to the 
family of machine learning in which the model is automatically built based on a large amount of data. In the 
late 1980s, deep learning was established as an efficient method to calculate the gradient of nonlinear functions 
[8]. However, the available computer resources during that period were not enough to train multi-layered 
neural networks. As the computer resources were developed and a large amount of data started becoming 
available since the 2010s, research on the deep learning gained attention.  

In recent years, deep learning had many achievements in using time-series waveform data. Oord et al. 
[9] introduced WaveNet, a deep learning algorithm to generate raw audio waveforms. In seismology, Perol et 
al. [10] introduced ConvNetQuake for earthquake detection and location from a single waveform. DeVries et 
al. [11] discussed prediction of aftershock patterns without prior assumptions on fault orientations.  

In this study, we propose a deep learning model to estimate the seismic intensity at a target site 
(temporary seismometer) based on only observation records from permanently installed seismometers in a 
surrounding area. No geological information is used in the estimation. As a result, after the temporary 
seismometer was removed, this strategy can estimate the spatial distribution of seismic intensity using only 
sparsely installed permanent seismometers. The novelty of our proposal lies in not using any geological data 
explicitly. The site amplifications are expected to commonly contribute to the weak motions, and the source 
factors (origin, magnitude, etc.) must be extracted from the records observed at permanent stations around the 
target area. The neural networks are appropriate technology to extract these features and create a model without 
any human manipulations. 
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2. Deep learning 
2.1 Data 
Fig.1 shows input stations and a target station which 
is a hypothetical temporary seismometer. The target 
station is K-NET IBRH12, which is being operated by 
National Research Institute for Earth Science and 
Disaster Prevention (NIED). The target station is 
located in Ibaraki prefecture, Japan and is one of the 
stations that recorded the most earthquakes in Japan. 
The number of data is an important factor in deep 
learning. Therefore, this station, for which much data 
is available, was selected as the estimation target 
point. The input stations are other K-NET stations, 
FKSH10, FKSH12, IBR003 and TCGH16, which are 
deployed to surround the target station IBRH12. The 
distances from the target station are 42.21, 47.78, 
40.00 and 38.80 km, respectively. 

This analysis considers a hypothetical situation 
where the station IBRH12 is assumed to be terminated 
(not recording) for the last few years. This can mimic 
our strategy where a temporary seismometer is 
deployed in a vicinity to estimate the seismic 
intensity, instead of the permanent seismic station.  

 The seismometer at the target station (IBRH12) 
recorded 2594 earthquake events from May 1996 to 
May 2019. However, four input stations do not have 
all records of events observed at IBRH12. Therefore, 
it was assumed that the output of an event would be 0 
at an observation point that has no record for that 
event. We apply these recorded data to the deep 
learning. The epicenter distribution is shown in Fig.2 
Most of the events are aftershocks of the 2011 Tohoku 
earthquake, while some shallow crust earthquakes are 
also included. Fig.3 shows histograms of Mj (local 
magnitude defined by JMA), and PGA (vector sum of 
NS and EW directions) and JMA seismic intensity 
(IJMA) at the target station. They lie in the range of 
2.7-9.0, 0.344-801.25 cm2/s and 0-5.82, respectively.  

 70% (1815 events), 10% (259 events) and 20% 
(520 events) of the records are adopted as training, 
validation, and test data, respectively. Fig.2 and Fig.3 
show each of them separately. Both the epicenter 
distribution and histograms imply no significant bias 
among the training, validation, and test data.  
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  Fig. 1- Location of the input stations and target station.	

  Fig. 2 - Epicenter distribution of all earthquakes. Green, 
black and red circles show the epicenters of the seismic 
event used in training, test and validation data, respectively. 
4 black triangles and a white triangle are the input and target 
seismometers, respectively.	

135˚

135˚

140˚

140˚

145˚

145˚

150˚

150˚

35˚ 35˚

40˚ 40˚

45˚ 45˚

●Training data (1815 events)
●Validation data (259 events)
●Test data (520 events)

9c-0003 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0003 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

4	

The original acceleration records are 
preprocessed before applying the deep learning. 
Zero values are padded prior to the original records 
when its trigger time is delayed from the earliest 
ones in the stations. Real-time seismic intensity [12] 
is then calculated for all the records. The time series 
of seismic intensity is applied to both the input and 
target of the deep learning as shown in Fig.4. 

 

2.2 Model  
A classical neural network consisting of only fully 
connected layers does not well interpret a sequence 
of data lists. Instead, convolution neural network 
(CNN) can interpret some relationship between the 
neighboring data. Several applications of deep 
learning in the field of seismology apply the CNN 
layers in their neural network models [10,13,14]. 
However, the time series data must include a 
principal feature, causality, which cannot be 
interpreted by CNN. In addition, the effect may 
appear with some time delay due to the travel time. 

Long short-term memory (LSTM) [15] is a 
well-established neural network component for 
time series analysis. A cell of LSTM consists of 
input gate, output gate, and forget gate. Each time 
sample affect both the output and the stored 
variables, and the efficiency (weight) is controlled 
by the gates. The stored variables carry over the 
next time sample unless the forget gate is closed. 
This scheme allows to store the effect in long time 
as well as short time. The model guarantees the 
causality if the samples are inputted sequentially. 
The LSTM has succeeded in the field of speech 
recognition [16] and text interpretation [17].	 

Our model consists of one layer of LSTM and 
one fully connected layer, as shown in Fig.5. The 
layer of LSTM consists of multiple cells, which are 
composed by the three gates. 100 time samples are 
inputted to the cell sequentially. The cell 
manipulates the input data to be stored and output 
with some calculations. The stored data are 
recursively used in the consecutive manipulations. 
As result, the sequential input of 100 samples 
generates 100 outputs through the cell. Each cell 
allows to input multidimensional variables. The 
LSTM layer inputs 4 values, that corresponds to the 
number of input stations, per cell and time sample. The LSTM layer consists of 50 cells in parallel. This 
provides 50 values per time sample. However, for the prediction, we use only the final output after the 
sequential calculations. Then, the LSTM layer generates 50 values. The values are inputted to the fully 
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  Fig. 3- Histogram of (a) Mj and (b) PGA, (c) Seismic 
intensity of IBRH12 records for each training, validation 
and test data. 

(a) 

(b) 

0

200

400

600

800

1000

1200

E
ve

nt
s

PGA[gal]

Training data (1815 events)
Validation data (259 events)
Test data (520 events)

(c) 

0

200

400

600

800

E
ve

nt
s

Seismic Intensity

Training data (1815 events)
Validation data (259 events)
Test data (520 events)

9c-0003 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0003 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5	

connected layer with 1 output node. Therefore, we create the one-time sample data of the real-time seismic 
intensity. 

Input and output samples are the real-time seismic intensity of the input (FKSH10, FKSH12, IBR003 
and TCGH16) and target (IBRH12) station records, respectively. In one execution, 100 time samples are 
inputted to the model, and 1 time sample is outputted. The input data refers to the time slice from t-0.99 to t 
seconds, and the output data refers to the t+0.01 seconds. The execution sequentially continues from head of 
the record to the end by shifting the referring time slice. Then, the target station records are predicted through 
the deep learning model. Notice that the model parameters are common in each time slice.  

The model is trained to minimize the cost function between the predicting and target station records. 
The problem setting is classified into regression problem in the deep learning. The cost function is a mean 
squared error (MSE), defined as follows; 

MSE =
1
𝑛

𝑝𝑟𝑒* − 𝑡𝑎𝑟* .	
0

*12

																																																					 1  

where pre and tar are the predicting and target real-time seismic intensity, and k refers to all the data sample 
over time, level space of real-time seismic intensity, and records. n is the total number of data samples. All the 
activation functions are linear. The weights of the model are updated to minimize the cost function by using 
adaptive moment estimation [18]. The updates are executed in the end of each event. 

  

LSTM layert-0.99[s]

t-n[s]

t[s]

Deep Learning

t+0.01[s]
Input

input_t-n Cell of 
LSTM

1
2

50

t-n

fully connected
layer

1
50

2

1

Prediction
(Real-time seismic intensity)

1
2

50

t-0.99

t(Real-time seismic intensity)

!"#$_&'().++ !"#$_,'().++ !"#$_-'().++ !"#$_.'().++

!"#$_&'($ !"#$_,'($ !"#$_-'($ !"#$_.'($

!"#$_&' !"#$_,' !"#$_-' !"#$_.'

!"/0''1).)&

Fig.5- Deep learning model to predict real-time seismic intensity. 

Deep 
Learning

in_1
(FKSH10)

in_2
(FKSH12)

in_3
(IBR003)

in_4
(TCGH16)

Time-series
acceleration 

t-0.99〜t[s]

t+1[s]

error

NS UDEW

NS UDEW

NS UDEW

NS UDEW

out
(IBRH12)

NS UDEW

|NS+EW+UD| Real-time
seismic intensity

t+1[s]

Input

Prediction Target

Time-series
acceleration 

|NS+EW+UD|Real-time
seismic intensity

Real-time
seismic intensity
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3. Result 
3.1 Training and validation process 
The deep learning model was trained (500 
epoch) using training data. One epoch is a 
single pass through the all training data. 

In training process, one thing to note 
about deep learning is overfitting. In the case 
of overfitting, as learning progresses, MSE of 
validation data increases with respect to them 
of training data, which is constant or 
decreases. This indicates that the deep 
learning model is applicable only to training 
data and loses versatility. In order to confirm 
if the trained model is in case of overfitting or 
not, the trained model was validated using the 
validation data that was not used for training 
the model. Fig. 6 shows the comparison of 
MSE of training data and validation data. 
From this result, the MSE of training and 
validation data were constant, and the trained 
model was not overfitting. 

Fig.7 shows the accuracy of seismic 
intensity classification by trained deep 
learning model for validation data. From this 
result, the validation data was classified most 
accurately by the 201 epoch trained model. 
Therefore, we chose the model for test 
process.  

  

Fig.6- Mean Squared Error per epoch of training 
and validation process in deep learning. 
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3.2 Test process 
We check the performance of the trained deep learning 
model by comparing the target and predicted records of 
test data. The performance is clarified by compared to 
records at the nearest station (IBR001) and maximum 
values recorded within 30km from the target station. 
The IBR001 station is 7.60 km away from the target 
station IBRH12. The maximum value refers to the 
maximum real-time seismic intensity among 11 stations 
(FKS014, FKS015, FKSH13, IBR001, IBRH13, 
IBRH14, IBRH16, TCG001, TCG006, TCGH10, 
TCGH13) within 30km from the target station at each 
step (Fig.8), which is based on a concept of PLUM 
method [19]. PLUM, which is utilized in EEW system 
in Japan, uses the maximum value of real-time seismic 
intensities in a target area for prediction.  

Fig.9 shows four samples of the time evolution of 
real-time seismic intensities for the validation data. 
Each dataset corresponds to the events, namely, (a) Feb 
15, 2015 (Mj 4.7), (b) May 17, 2018 (Mj 5.3), (c) May 
16, 2016 (Mj 5.5), and (d) Mar 30, 2018 (Mj 5.1). The 
left column shows the real-time seismic intensities of 
input records (four), prediction (deep learning) and 
target. The final values of prediction and target real-time 
seismic intensities are also indicated. The right column 
shows the prediction, target, nearest record and 
maximum within 30km from target station. The JMA 
seismic intensities are also indicated.  

 The real-time seismic intensity of the target does not match any of the four input records. It reconfirms 
that the target and four input stations are sufficiently distant and the problem setup in this study is challenging. 
The real-time seismic intensities of prediction by deep learning are well trained for all the four samples, and 
they clearly differ from those of any input records. It indicates that the trained model does not output any input 
directly. According to the left figures of (a) and (c), in case that the real-time seismic intensity of the target 
exists among the four inputs, the model predicts more accurately than any input value. On the other hand, in 
both the case where the target is smaller than all inputs (b) and the case where the target is larger than all inputs 
(d), the prediction succeeded in accurately estimating the real-time seismic intensity without being affected by 
the tendency of inputs. 

Maximum values (d=30km) usually overestimate the real-time seismic intensity as shown in (a), (b) and 
(c) because they output the maximum records of observation stations surrounding the target, and the model 
predicts them well in that case. On the other hand, the prediction can be accurately reproduced even in the case 
where the target specifically records a value larger than all the surrounding stations records. 

  

  Fig.8- Location of the input station, target station, 
nearest station and 11 stations within 30km from 
the target station. d is the diameter of a circle with 
center at IBRH12. 	
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  Fig.9- Three examples of Real-time seismic intensities of the prediction and target, compared with 
four input records (left) and the nearest record and maximum of 11 stations within 30km (right).	
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Fig.10 compares the final value of real-time seismic intensity (SI) among nearest, maximum (d=30km), 

prediction and target. We defined the final value of real-time seismic intensity as the SI. The horizontal axis is 
events, whose order is arranged in ascending order of the SI of the target. The predictions show the smallest 
errors compared to nearest and maximum (d=30km). The maximum (d=30km) tends to be overestimated. This 
is due to the large influence of attenuation. The nearest is closer to the target than compared with maximum 
(d=30km), but it has a variation in estimation.	The deep learning model predicted the SI with relatively high 
accuracy. 

In order to quantify the prediction performance compared to the maximum (d=30km) and nearest record, 
an index J is proposed as shown in Eq. (2).  

𝐽 =
𝑆𝐼6789:;<:=0 − 𝑆𝐼<>7?8<

𝑆𝐼@ − 𝑆𝐼<>7?8<
2  

SIA is a reference value of SI, which is defined by either the maximum (d=30km) or nearest record.  J less than 
1 means that the deep learning predicts better than the reference method. Histograms of J (Fig.11) show that 
most of J are less than 1. Their peaks appear less than 1 in both cases. This implies that the prediction of deep 
learning estimates more accurately than the maximum (d=30km) and nearest record. 

 

 
  

  Fig.10- Comparison of deep learning prediction, target, 
maximum (d=30km) and nearest record to IBRH12.	

  Fig.11- Histograms of J with respect to the nearest and maximum (d=30km).	

  (a) Nearest	   (b) Maximum (d=30km)	
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 Fig.12 shows the comparisons of observed and estimated SIs, which come from prediction, maximum 
(d=30km) or nearest record. Each MSE of estimations are indicated below the figures. The estimated SIs were 
classified into “accurate” if their prediction errors were within one IJMA unit (light green zone). Errors larger 
than one unit were classified as “overpredicted” (light coral zone) or “underpredicted” (light blue zone). The 
maximum (d=30km) is overestimated. This may be because the attenuation between the adopted station and 
target has a great influence. The prediction and nearest record is accurate for both inland and offshore 
earthquakes. However, prediction has a slight tendency to underestimate in the case where the SI of the target 
is large, and the nearest record has a variation in estimation. In terms of MSE, prediction predicted SI more 
accurately than the nearest record. 

 

4. Conclusion 
Deep learning model to estimate real-time seismic intensity without any geological information is proposed in 
this study. The model consists of LSTM and fully connected layers, and they can estimate the real-time seismic 
intensity from the permanent station records. The model was verified by using the ground motion records at 
K-NET FKSH10, FKSH12, IBR003, TCGH16, IBRH12 stations. The prediction performance is better than 
the nearest record or the maximum of 11 stations within 30km from target station which is assumed in the 
PLUM method [20], in terms of real-time seismic intensity and seismic intensity (the last value of real-time 
seismic intensity). More data can improve the performance.  

We discuss the deep learning and its validation on the basis of the K-NET seismic network data. This 
approach can be explicitly utilized to earthquake early warning (EEW). Real-time data observed at the 
permanent seismometer can predict the ground motions at the target site through the real-time learning model. 
This approach is similar to the PLUM method [19, 20]. The PLUM method can estimate seismic intensity 
distribution on the basis of available real-time records, but the real-time correction of the site amplification is 
required [21]. The deep learning model, on the other hand, can train the wave propagation as well as the site 
amplification naturally. This means that the deep learning approach is a possible future solution to increase the 
accuracy of EEW, though it requires more development and validation. 
 
  

Fig.12- Comparison of observed and estimated SI 
 (left: deep learning prediction, middle: nearest, right: maximum). 
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