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Abstract 

Safety of ageing infrastructures is one of the primary objectives of Structural Health Monitoring systems. Obtaining 

information of structure by means of vibration data is, therefore, important in disaster prevention and seismic evaluation 

of structures. Data driven approach in form of long-term vibration measurement is one of the straight forward method to 

evaluate structural integrity in terms of daily use against environmental loads, traffic loads, fatigue, etc. However, the 

data measured and recorded during monitoring is generally heterogeneous in nature and generating real-time insights out 

of such heterogeneous data with regard to its expanding volume is often a tedious and time-consuming process that hinders 

real-time evaluation of measured data for structural assessment. Therefore, the-state-of-art literature demands a method 

for auto realization of vibration data and eliminate the bottlenecks of processing large amount data to promote stable 

observation of structural conditions. With great success of deep learning, there exists a possibility to automatically learn 

the feature representation from time series for time series classification of recorded data which is comprehensively studied 

in this work. Automation of the manual process of looking after the raw data and realizing the vibration status promotes 

high-density observation as an important aspect for the state-of-art structural vibration monitoring. 

In this study, a simple and customizable Convolution Neural Network framework was used to train a vibration 

classification model which can be integrated into the measurement application in order to realize accurate and real-time 

bridge vibration status on mobile platforms. The inputs for the network model are basically the multichannel time series 

signals acquired from built-in accelerometer sensor of smartphones while outputs are the predefined vibration categories. 

To verify the effectiveness of the proposed framework, data collected from long-term monitoring of bridge was used for 

training a model and its classification performance was evaluated on the test set constituting the data collected from the 

same bridge but not used previously for training. An iOS application program was developed for incorporating the trained 

model with predefined classification labels, so that it can classify vibration dataset measured on any other bridges in real-

time. Results show an excellent classification accuracy up to 95%. 
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1. Introduction 

Vibration measurement data is the basic source of information for structural dynamic analysis in the field of 

Structural Health Monitoring (SHM). Accordingly, obtaining information of structure by means of vibration 

data is important in disaster prevention and seismic evaluation of structures. SHM has traditionally relied on a 

structural identification paradigm using physics-based models where the goal is to use measurements to update 

a numerical (e.g. finite element) model of the structure and then deploy the model to make predictions on 

structural behavior. While such models are important for understanding structural behavior, such models are 

unlikely to be readily available for the majority of bridges. Their generation can also be resource and time 

intensive. Furthermore, computed models may not replicate behavior of real structures due to uncertainties and 

approximations in the modelling process. Therefore, robust approaches for measurement interpretation that are 

generic and readily applicable without requiring detailed prior knowledge of structures have tremendous value 

in the context of extracting information from monitoring for bridge management.  

Data driven approaches, which rely purely on the collected measurements for measurement 

interpretation, offer great promise for long term continuous monitoring. Long-term vibration measurement is 

one of the straight forward method to evaluate structural integrity in terms of daily use against environmental 

loads, traffic loads, fatigue, etc. in addition to seismic loadings. Further, to incorporate low-cost measurement, 

especially for long-term purpose, Wireless Smart Sensor Networks (WSSNs) are increasingly applied in SHM 

around the world [1-6]. However, in most of the cases the long-term vibration data inevitably contains 

nonstationary noise which usually occurs due to sensor induced faulty signals. These sensor faults often occur 

in sensor data obtained by using low-cost WSSN due to hardly-avoidable reasons like changing temperature 

and battery issues. Since those noise would significantly affect analysis results, the SHM output may be 

untrustworthy. Moreover, for post earthquake bridge status and immediate occupation function evaluation, the 

environmental vibration and device noise will trigger the false threshold alarm too often during seismic 

observation in practice. Therefore, time-series data blocks appropriate for analysis needs to be detected 

manually, which is often a tedious and time consuming process that hinders real-time evaluation of measured 

data for structural assessment. Also, the system needs to find some automatic method to look after the raw data 

and realize the vibration status by labelling and make them prepare to be used. Automation of this manual 

process promotes high-density and long- term observation which is one of the major concerns currently [7,8]. 

By developing a method for auto realization of time-series blocks in long-term vibration records, the 

bottlenecks of processing large amount data will be eliminated, and stable observation of structural conditions 

can be promoted. The problem of auto detection can be formulized as a general classification problem and can 

be solved using simple neural network-based architecture or a more advanced deep learning model such as 

Convolutional Neural Networks (CNNs). With the tens of thousands of recorded data, which will continue to 

grow exponentially and indefinitely during long-term measurement; combining the powerful algorithms of 

CNN can make that data become the most valuable asset for structural condition assessment. 

In recent years, convolutional neural networks have led to impressive results in object recognition [9] 

face verification [10] and audio classification [11]. Nevertheless, with great success of deep learning, there 

also exists a possibility to automatically learn the feature representation from time series for Time Series 

Classification (TSC) as well. However, there have not been many research efforts in the area of time series to 

embrace deep learning approaches in a 1D framework. Some studies that implement 1D CNNs includes 

classification of electrocardiogram (ECG) [12], fault detection in high power engines [13], and Human Activity 

Recognition (HAR) problems [14-16], etc. However, to the best knowledge of the authors, all these previous 

works that utilizes CNN although offers a robust framework for data classification but does not provide a 

solution to perform those task in real-time and using low-cost consumer grade devices like smart devices. 

Moreover, as the network grows deeper, the model complexity also increases correspondingly and even a 

relatively small network, involves millions of parameters to classify the time series data. Such costly 

computation complexity makes the deployment of CNN models unaffordable for common PCs and mobile 

devices, and has not been practiced in real-time vibration classification purpose at the same time. This paper, 

therefore, proposes a novel data driven approach to solve this challenge. Smart device is a powerful device 

that have built-in sensor infrastructures to inspect multiple parameters such as acceleration, displacement, 
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angle, force, etc. The real-time data communication and computation adds even more advanced capabilities to 

the device. With remote monitoring and real-time data mining, users can solve more applications related to 

structural safety assessment, save inventory costs, and help prevent unplanned downtime. Therefore, realizing 

the advancement in the application of smart devices for SHM, these are used as a quick bridge vibration status 

monitoring kit in this study. For this purpose, first of all a simple yet computationally efficient convolution 

neural network-based framework has been investigated. Then, the framework is integrated into measurement 

application that performs a real-time classification of measured records from smart devices by exploiting 

relationships in sensor inputs and automatically extracting distinct features in time domain. 

2. System Design 

The system architecture framework consists of three main layers. The first layer is responsible for data 

preparation, including data collection and data preprocessing. The second layer is the key layer in which feature 

extraction is performed using customizable Convolutional Neural Network. The last layer is the classification 

layer, in which the trained classifier is integrated with iOS smart device operating system for real-time and in-

device classification. 

2.1 Data Collection 

There currently exists no publicly available dataset of labelled time series showing different vibration 

categories and sensor induced faulty signals. Thus, a new database had to be assembled from scratch to test 

the proposed method. Smart devices’ recorded data during long-term vibration measurement of bridge [17] 

was utilized to provide the necessary resources for creating a dataset. The bridge has been instrumented with 

six smart devices (iPhone 5s) inside of the box girder at six different locations, continually measuring 

acceleration vibrations as shown in Fig.1 

 

 

Fig. 1 – Vibration Data measured at the bridge 
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Fig. 2 – Distribution of vibration categories used       Fig.3 – Typical waveforms illustrating different  

as training set           vibration types 

 

  

The vibration data collected from smart devices installed at different location of bridge mainly constitute 

four different types of raw acceleration data that corresponds to ambient data, sensor induced faulty data (drifts 

and spikes), traffic induced vibration data, and few earthquake records respectively. The database includes a 

total of randomly selected 2213 vibration data with each data containing 500 sample points 𝑁𝑠, corresponding 

to 5 seconds of acceleration record sampled at 100 Hz. All the vibration signals were hand labelled by the 

authors. Fig.2  shows the distribution of different types of vibration signals in the total database, while Fig.3 

gives a visual illustration of different vibration types. Some common issues faced when applying classification 

task are the imbalance of the dataset and the lack of enough training data. Since, real earthquake event is a rare 

phenomenon, it is justifiable that earthquake class contained the least data number amongst other. 

  

2.2 Data Preprocessing 

 

 

Fig. 4 – A typical time-sliced preprocessing of raw acceleration 

 

After creating the database, since the raw data is never available in the format that is needed for training 

it needs to be preprocessed. Preprocessing includes splitting the whole waveform into small segments of 

predefined data length 𝑁𝑠  and then manually assigning the appropriate label for each kind of vibration as 

shown in Fig.4. In this study, the data length for each sample, 𝑁𝑠 is taken as 500. After dividing the training 
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data into small segments, normalization is performed. Normalization with absolute maximum value amongst 

the training examples in a given sample is performed in this study. Similarly, since smart devices provide tri-

axial acceleration measurement, the final training example for a given sample labelled with an appropriate 

vibration class contains acceleration values from all three axis concatenated together. This means that the final 

data length of a training sample is adjusted to 3 ∗ 𝑁𝑠 

Another preprocessing step is to separate the whole dataset into a training and a test set. The data is split 

in such a way that the information from the test set does not bleed into the training set. This is generally the 

approach for evaluating the overall performance of the model during training and then validating against the 

test set. The real idea behind data splitting is that the network should predict the vibration characteristics from 

the data it has not seen before (i.e. data not used during training). Therefore, in this work, out of the total data, 

80% of the data are randomly taken for training purpose while the remaining 20% data which do not overlap 

with the training data, are used for testing purpose. 

 

2.3 Network Architecture  

In this study a 1D CNN configuration is used in order to fuse feature extraction and learning (vibration 

classification) phases of the raw accelerometer data obtained from smart devices. A machine learning model 

involves a lot of complex code, manipulating arrays and matrices. But since machine learning has been around 

for a long time, researchers have created libraries that make it much easier to create machine learning models; 

many of which are written in Python, SAS, MATLAB and other software. In this study, “Keras”- a Python 

based machine learning framework has been implemented for utilizing the deep learning model for the purpose 

of training a classifier for vibration data classification. Keras provides a consistent and simple API for building 

models that can be trained on one backend while deploy in another. Another reason to use Keras is due to its 

support to integrate “coremltools”, which directly creates iOS compatible trained model that can be used in 

smart device application for real-time and in-device classification tasks (Keras Documentation [18]). 

 

 
Fig. 5 – Detail map of CNN architecture for vibration classification 

 

The 1D CNN architecture used in this work consists of three convolution layer with kernel size 5, 3, and 

1 respectively, and each followed by MaxPooling layer and a dropout layer with drop percentage 50%, 20% 

and 20% respectively. The pooling layer halves the convolution layer’s width and height while dropout 

controls overfitting of the neurons. The use of pooling and dropout layers after each convolution layers 
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significantly reduces the number of parameters in the fully connected layers and training becomes faster. The 

lower layers use small no. of filters while higher layers use broader filters to process more complex parts of 

the input. Finally the top layers in CNN are stacked by two fully connected neural networks. These fully 

connected neural network are expected to combine different local structures in the lower layers for the final 

classification purpose. Table 1 provides the detail overview of the CNN model while Fig.5 illustrates the same 

in form of a network map. 

 

Table 1 – Detail overview of CNN model architecture 

Layer (type) Output Shape Param # 

Conv1D (32x5x1) 1496x1x32 192 

Max Pooling 748x1x32 0 

Dropout (50%) 748x1x32 0 

Conv1D (64x3x1) 746x1x64 6208 

Max Pooling 373x1x64 0 

Dropout (20%) 373x1x64 0 

Conv1D (128x1x1) 373x1x128 8320 

Max Pooling 186x1x128 0 

Dropout (20%) 186x1x128 0 

Flatten 23808 0 

Fully Connected 1 128 3047552 

Fully Connected 2 4 516 

Total Parameters: 3,062,788 

  

From Table 1 it can be inferred that the total number of parameters while building a deep learning model 

depends on the number of variables that determines the network structure and how the network is trained. 

These variables are called hyperparameters. These hyperparameters are usually tweaked to find an optimum 

tradeoff between network accuracy and network training time. Convolution layer and pooling layer determines 

each layer’s output shape and number of parameters to be trained. Eq. (1) and (2) defines the output shape and 

no of parameters involved in the training respectively. 

 

Output Shape = Wi - Wf + 1, Hi - Hf + 1, Nf               (1) 

 

No of Parameters = Nf * (Wf * Hf * Di + 1)                (2) 

 

Wi: input length, Wf : length of filter, Hi : input height 

Hf : height of filter, Nf : filter number, and Di : input depth 
 

The weights from the convolutional layers are flattened and then goes to the fully connected layer. The 

output shape from the last convolutional layer and before the fully connected layer is (186, 1, 128). Therefore, 

the result of flattening is an array with 23808 elements as an input to the first fully connected layer. The first 

fully connected layer has 128 neurons which means that every neuron interacts with 23808 elements to produce 

a 128-neuron output layer. Finally, the 128 neurons are passed as an input to second fully connected layer to 

output as many neurons as the number of classes. In this model, since there are four classes, so the final output 

is four classes, each holding their probability of classification. The total number of trainable parameters 
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therefore sums up to be 3,062,788. In this study, the categorical cross entropy loss function is used to calculate 

the loss as a function of difference between the true measure and predicted measure while Stochastic Gradient 

Descent (SGD) algorithm minimizes the loss function. Batch size and number of epochs are arbitrarily chosen 

to be 200 and 30 respectively. Each epoch generally improves loss and accuracy measurement. More epochs 

produce a more accurate model, but training takes longer and sometimes may also lead to overfitting. 

3. Network Accuracy and Results 

 

 

Fig. 6 – CNN model accuracy and loss for training and test dataset 

 

 

Fig.7 – Confusion matrix for CNN model with original dataset 
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The network architecture described in above section were implemented on the generated database to test the 

efficacy of their performance for the purpose of automated vibration classification. From Fig. 6 it is observed 

that with increase in epoch, loss value decreases and accuracy increases. There is no significant improvement 

in loss or accuracy after epoch 25. Thus in overall 30 epochs were performed. The training accuracy is around 

99% while the test accuracy is around 95%. This means that the model generalizes well for the vibration data 

it has not seen before. To analyze the data in more detail, confusion matrix is shown in Fig.7. The confusion 

matrix indicates that many of the prediction error are due to confusion between three classes: bias, earthquake, 

and traffic. This is probably because these vibrations are relatively similar as compared to ambient vibration. 

Further, the performance of the model based on metrics such as Precision, Recall, and f1-score is excellent as 

shown in Table 3. These metrics are generally expressed mathematically using “Confusion Metrics” as shown 

in Table 2. 

Table 2  – Confusion metrics parameters 

 Predicted Class 

True 

Class 

 Class = Yes Class = No 

Class = Yes 
True 

Positive (𝑡𝑝) 

False 

Negative (𝑓𝑛) 

Class = No 
False 

Positive (𝑓𝑝) 

True 

Negative (𝑡𝑛) 

 

 

Table 3 – Precision, recall, and f1-score for original dataset 

 Precision(P) 

𝑡𝑝
𝑡𝑝 + 𝑓𝑝

 

Recall(R) 

𝑡𝑝
𝑡𝑝 + 𝑓𝑛

 

f1-score 

2 ∗ 𝑅 ∗ 𝑃

𝑅 + 𝑃
 

No. 

ambient 0.99 0.98 0.98 123 

device bias 0.97 0.94 0.95 167 

earthquake 0.96 0.92 0.94 59 

traffic 0.89 0.99 0.94 94 

avg / total 0.95 0.96 0.95 443 

 

Convolutional nets often tend to overfit when dealing with smaller datasets. The overall accuracy of the 

model although being high around 95%, could still be improved further with hyperparameter tuning and 

increasing the dataset especially using data augmentation method. 

4. Real-Time Auto Classification of Records in Smart Devices 

In this study, for realizing end-to-end processing from raw observation data to analysis result, a framework for 

real-time auto realization of smart device recorded bridge vibration signals was developed. The iOS application 

program developed for acceleration measurement [19] was further extended to incorporate the trained model 

with predefined classification labels, so that it can classify vibration dataset measured on any other bridges in 

real-time. The integration of powerful machine learning models into Apps on iOS devices is possible due to 

Apple’s straight forward machine learning framework known as “Core ML” (Core ML Apple developers [20]). 
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The trained model as described in previous section is converted to iOS compatible model which is in Core ML 

format by utilizing Keras support for “Coremltools”. 

 

 

 

Fig.8 – Core ML integration into smart devices for real-time vibration classification 

 

 

Fig.9 – In-device prediction (classification) of smart device recorded vibration data 
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Core ML is the machine learning framework used across apple products i.e. iOS, macOS, watchOS, and 

tvOS. Core ML delivers fast performance with easy integration of trained machine learning models. The 

machine learning prediction is calculated on the device itself due to which real-time classification performance 

is achievable. Core ML is optimized for on-device performance, which minimizes memory footprint and power 

consumption. 

 

There are basically three advantages of using Core ML as machine learning on the device: 

1. Low Latency and near Real-Time Results: No need to make network API call and wait for the response. 

This means that such framework is beneficial for applications such as processing the videos on successive 

frames. 

2. Offline availability: The application runs without network connection. 

3. Cost: No network connection, no API cost, and no model stored in the cloud. 

 

However, there are some disadvantages as well. By adding the model to the device, the size of the app 

increases and creating an accurate model sometimes can be huge. Prediction and inference on the mobile 

devices involve lot of computation which increases battery power usage and some of the older devices may 

have difficulty in performance. The model on the device will need to be continually trained in most cases and 

any change to the model results in the app needing to update on the device. 

 

The Core ML integrated iOS application program  that measures device acceleration was then applied 

to verify the proposed method by collecting vibration data from random bridges. A sample example of a 

random three axis acceleration measurement on bridge using smart devices for a period of 120 seconds and its 

predicted classification is shown in Fig.9. Since the inputs for the trained CNN model are the multichannel 

time series signals each of 500 data points acquired from built-in accelerometer, it can be seen that the classifier 

predicts vibration categories (labels) to each 500 data points along the whole data set. Among the four pre-

defined labels in the trained classifier, two of the categories (i.e. ambient and traffic) are rightly predicted. The 

portion of record with significant peaks in the vertical direction corresponds to influence of traffic while those 

without peaks corresponds to just ambient vibration, and the classifier predicts the classification accordingly. 

In this sample record, there are neither any faulty records nor an earthquake record, which therefore are not 

predicted by the classifier. These results thus demonstrate the accuracy and viability of autonomous bridge 

vibration realization using smart devices. 

5. Conclusion 

In this study, a framework for real-time autonomous bridge vibration realization using smart devices has been 

investigated. The framework integrates convolutional neural networks to exploit different types of 

relationships in sensor inputs, and automatically extract robust and distinct features in time domain to 

effectively carry out classification tasks in smart device itself. The effectiveness of the CNN framework, was 

also verified with data collected from long-term monitoring with results showing an excellent classification 

accuracy up to 95%. The experience of using smart devices for machine learning paradigm provided with 

valuable insights and promising guidelines, opportunities and potential of such low-cost devices for structural 

monitoring in a rapid, remote, automated, and quantified framework. Robust implementation of this low-cost 

and automated system can radically influence future advancements in smart, sustainable, and resilient 

infrastructure. 
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