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Abstract 

Earthquakes have caused severe economic losses and casualties around the world. Once an earthquake occurs, timely 
and accurate evaluation of the seismic damage in a disaster area is of great importance for organizing effective post-
event relief. However, conventional in-situ inspection methods are time-consuming and labor intensive. Thus, they are 
unlikely to meet the requirements of proper emergency response when deployed alone. Although post-event 
damage/loss prediction methods that are based on fragility analyses are efficient, their accuracy and universality have 
not yet been established. A more accurate, yet less computationally efficient, approach is to use recorded ground 
motions in nonlinear time-history analyses (NLTHA) of structure-specific predictive models. However, carrying out 
such complicated NLTHA on structure-by-structure basis across an entire urban region is not yet quite possible to meet 
the granular demands of emergency response efforts. Given this perspective, a rapid regional post-event seismic damage 
assessment method based on convolutional neural network (CNN) is proposed in this study, which offers fair accuracy 
and can render predictions in real-time. In this approach, an inventory of buildings in a given region, the definitions of 
their damage/performance levels, and a suite of anticipated ground motions for the region are established. These data 
are then used in NLTHA to establish a training set for CNN that will estimate the damage state of a building or selected 
region, given the time-frequency distribution (TFD) graphs of a ground motion. This CNN estimate can be made nearly 
instantaneously—i.e., it is suitable for rapid post-event assessment—and can provide high accuracy provided that the 
training set is rich. CNN is particularly well suited for this task because TFDs are essentially visual representations of 
both the frequency-domain features, and instantaneous as well as cumulative time-domain features of ground motions. 
The proposed methodology is verified with a numerical case study on the 3-story special moment frame building. 

Key words: seismic damage prediction; real-time; convolutional neural network (CNN); time-frequency distribution
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1. Introduction 

Earthquakes have caused severe economic losses and casualties in many countries. Once an earthquake 
occurs, organizing effective post-disaster response is a key factor in reducing economic losses and casualties. 
Therefore, it is necessary to evaluate the seismic damage in the disaster area timely and objectively. This task 
bears strict and high demands on the accuracy and expediency of seismic damage predictions. A delayed or 
inaccurate prediction may result in catastrophic consequences [1]. 

Because site investigations of seismic damage are time-consuming and require well-trained 
professionals, they cannot meet emergency response requirements. To solve this problem, several near real-
time seismic damage evaluation systems have been established, including PAGER [2], GDACS [3], etc. 
These systems acquire information about the earthquake from sensor networks, and the corresponding 
seismic damage is evaluated through fragility analysis. The economic losses and casualties are then assessed 
by using empirical loss models calibrated with historical earthquake events. 

Post-event seismic damage assessment methods based on the nonlinear time-history analysis (NLTHA) 
with a regional inventory of structural models have also been proposed in recent years. For example, Lu and 
Guan [4] proposed a city-scale approach based on NLTHA and developed the RED-ACT system [5]. The 
RED-ACT system acquires real-time ground motions through existing strong motion networks and 
comprehensively evaluates the seismic damage by conducting NLTHA on typical individual buildings and 
target regions. The accuracy of the method has been explored and verified in many aspects in prior studies [6, 
7]. It has also been adopted by the SimCenter project supported by the US National Science Foundation [8] 
and the emergency response processes of several earthquakes [5]. 

It is possible to generalize the aforementioned efforts on rapid post-event seismic damage assessment 
method. The basic steps of a generic and generalized rapid seismic damage assessment method appear to be 
the following: (1) Establish a database of ground motions and an available inventory of building analysis 
models. For data-driven methods, it’s also necessary to analyze the seismic damage on buildings caused by 
these ground motions. (2) Establish mapping rules between the applied ground motions and the predicted 
seismic damages. (3) Once a new earthquake occurs, use these pre-established mapping rules and rapidly 
estimate (in near real-time) the seismic damage, given the information of new earthquake events. 

All of the previously mentioned—namely, NLTHA-, fragility-based—approaches are clearly a sub-
class of this broader definition. The key issue is to identify and employ an accurate and computationally 
efficient mapping between the excitation and the structural damage. In this regard, NLTHA-based methods 
lie at one end of the spectrum. The NLTHA-based methods take in the entire time series of recorded 
excitations as input, which, if correctly used, always produce highly accurate predictions of the actual 
damage [9, 10]. However, at the present time, they cannot yet meet the near real-time requirements of 
emergency response efforts at a regional-scale or city-scale, even with large computational resources [4, 11].  

At the other end of the spectrum lie the fragility-based approaches. These post-event assessment tools 
are clearly far more efficient than the NLTHA-based approaches. However, existing studies have shown that 
many of the commonly used 1D scalar ground motion features cannot alone predict the seismic damage well, 
including magnitude, peak ground acceleration or velocity (PGA or PGV), spectral acceleration at 
fundamental period, significant duration, etc. (e.g., [7, 12]). While more advanced fragility analysis based on 
vector-valued intensity measures are being devised (e.g., [13, 14]), seismic fragilities that are based only on a 
limited number of input ground motion attributes will unlikely produce uniformly accurate predictions. 
Besides, for areas lacking historical earthquake data, existing empirical fragility models may not be 
applicable. 

Given the observations and perspectives provided above, it appears necessary to devise methods that 
can produce results nearly as quickly as the fragility-based methods, but at higher accuracy levels, ideally 
approaching those afforded by structure specific NLTHA-based regional rapid post-event assessment. In 
order to achieve this feat, it is necessary to devise a method that explicitly or implicitly takes into account 
complex ground motion features, and rapidly maps them into response/damage/loss measures. 
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Ground motion features can be first divided into two basic categories—namely, time- and frequency-
domain features. Correlations of a variety of these features under both categories with specific 
performance/damage measures continue to be examined for common structural systems [15]. One pathway 
towards combing these complex features goes through the use of time-frequency distributions (TFDs) [16] of 
ground motions. Existing studies have explored the utilization of TFDs of ground motion records, which 
mainly focus on the structural monitoring and identification studies (for earliest examples, see [17, 18]). 

Among many alternatives, the “wavelet transform” [19] yields an optimal TFD of the input signal. 
TFDs obtained through a continuous wavelet transform comprehensively embodies both the time- and the 
frequency-domain features of the ground motion signals. Illustrated through the example graph shown in 
Figure 1, each data point in a TFD graph corresponds to a certain time (horizontal axis) and frequency 
component (vertical axis), the color of which represents the absolute value (magnitude) of the wavelet 
coefficient. However, the data embedded in such a plot is complex, outside of the few examples discussed 
above, have not been used in structural performance or damage assessment previously. Nevertheless, it 
appears possible to establish useful mapping rules between such TFD data and structural response, as will be 
described next. 
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(a) Time series and Fourier amplitude (b) Time-frequency distribution (TFD) graph 

Figure 1 – Different ways to represent a ground motion 

In recent years, neural network technology has developed rapidly, and recorded significant 
accomplishments in nonlinear and fuzzy learning tasks [20]. Among the many types of neural networks, 
convolutional neural network (CNN) emerged as an important algorithm in the field of computer vision, and 
has been widely used in image recognition, video processing, autonomous navigation applications, etc. In the 
field of earthquake engineering, CNN is also recognized. For example, Vetrivel et al. [21], Xiong et al. [22] 
identified CNN as a potentially highly useful tool in post-disaster damage identification. 

These prior studies suggest that it should be possible to use CNN to establish accurate mappings 
between TFDs and structural response/damage. While the training, calibrating, and validating a CNN will be 
time-consuming, a trained CNN can yield real-time predictions with high-accuracy after an earthquake. 
During an actual event, the only computation needed will be the conversion of recorded signals into TFD and 
supplying them to the pre-trained CNN. These calculations are highly scalable in terms of parallel 
computation, as each record can be processed by a dedicated processor; and more importantly, the 
continuous wavelet transform of an individual time series signal can be rapidly carried out. In what follows, 
such a CNN-based rapid post-event seismic damage prediction methodology is devised and examined in 
terms of both accuracy and efficiency. 
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2. Framework 

The framework of the proposed rapid CNN-based post-event seismic damage assessment method is shown in 
Figure 2. Developing and applying this method comprises three phases: (1) Establish an inventory of 
predictive models of the target buildings, along with a suite of ground motions (ideally representatives of 
ground motions expected for the particular region that building inventory is located at). Carry out NLTHA 
with each model and each ground motion and obtain damage states from such calculations. (2) Establish the 
mapping rules between the computed damage states and ground motions. The TFD of each ground motion 
and the resulting damage are input-output training pairs for CNN. Select CNN models with outstanding 
predictive abilities. (3) During emergency responses, obtain the TFD of each recorded (or estimated) motion 
and use the pre-trained CNN to estimate the seismic damage. 

 
Figure 2 – Framework of the proposed CNN method 

It is clear that depending on the resolution/granularity of the ground motion measurements and the 
details of the model inventory, different variants of the general method described above can be generated. 
For example, ground motions can be estimated at locations that lack measurement stations, and building 
models can be coarsely generated based on some coarse metadata that describes the region by an appropriate 
algorithm for refined predictions [6]—albeit with larger uncertainty compared to the ideal scenario wherein 
ground motions are sampled with spatially dense sensor arrays, and every building in the region is 
individually modeled. Alternatively, both the ground motion records and building models can be lumped 
together (e.g., by city blocks) for coarser predictions. 

2.1 Establishing datasets 

At present, there are several open-access ground motion databases such as the PEER NGA-East/West/West2 
database [23] of the United States, and the K-NET database [24] of Japan that can be used for the task at 
hand. For the present effort, 10,548 ground motions are obtained from the PEER NGA-West database. To 
generate the corresponding TFD graphs, the ground motion records are pre-processed and continuous 
wavelet transformed (details of these procedures are provided later). 

The damage states of the target buildings are obtained through conventional or city-scale NLTHA [4] 
using the obtained ground motions. The damage state of a building is divided into five different levels—
namely, “none damage”, “slight damage”, “moderate damage”, “extensive damage”, and “complete damage”. 
These rather-qualitative damage classifications are linked to specific structural response/damage states in 
various guideline documents (e.g., [25, 26]), which are also adopted in this study. 
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Note that it would be better to select proper ground motion datasets for the training according to the 
specific situations of the selected building. For example, if the selected building is close to a subduction fault, 
the CNN models trained by ground motions with similar source characteristics are likely to have better 
performance. As such, the subsequent development in the remainder of this study should be viewed as an 
example, rather than an all-encompassing solution. 

2.2 Training and testing of CNN 

The training and testing of CNN are carried out using the TFDs and damage indicators of ground motions. 
The CNN models with outstanding predictive ability are then selected. To ensure independence between the 
training and testing datasets, another 1,875 ground motions obtained from the K-NET database [24] are 
chosen as the testing dataset in the present study (details of these procedures are provided later). 

The proposed method is demonstrated using one typical building in this study, which is a 3-story 
special moment reinforced concrete (RC) frame with a height of 10 meters. The seismic design intensity of it 
is degree VII (with a PGA of 0.10g at a 10% probability of exceedance in 50 years). In this one-building case 
study, the accuracy of CNN predictions, training and prediction efficiency, along with the influences of 
different CNN network structures and hyperparameters are examined. 

2.3 Seismic damage prediction 

At present, several real-time earthquake monitoring networks have been established, such as the K-NET of 
Japan [24] and the strong motion network of China [27]. Once an earthquake occurs, these networks can 
record the ground motions and transmit them real time. After receiving the measured ground motions, the 
wavelet transform will be carried out automatically to generate the corresponding TFDs. With these TFD 
graphs, the preloaded CNN models can predict the damage states of the target buildings or regions 
immediately. It should be emphasized that if the CNN are properly trained, there is no need to conduct the 
training and testing again in times of emergency. 

3. Seismic damage prediction based on CNN 

3.1 Obtaining and Pre-processing of samples 

3.1.1 Training Samples 

In the present study, 10,548 ground motions are obtained from the PEER NGA-West database [23]. After the 
pre-processing, 42,192 samples are obatined and randomly divided into two sets—namely, the training set 
(95%), and the validation set (5%). The pre-processing is conducted under the following steps. 

Step 1. Amplitude scaling: Destructive earthquakes are inherently less frequent. Moreover, the 
proportion of strong near-field ground motions among all records of a destructive earthquake is small. 
Therefore, only limited ground motion records will result in moderate or more severe damage states. To 
remedy this issue (of the inherent rareness of high-amplitude motions in the record inventory), amplitude-
scaling is utilized in the present study. 

Existing studies have proved that applications of excessively large scaling factors on recorded ground 
motions may result in significant errors; and scaling factors less than 4.0 are typically deemed acceptable 
[28-30]. Therefore, scaling factors in this study are selected as 1.0, 2.0, 3.0, and 4.0. By multiplying each 
ground motion with these scaling factors, 42,192 amplified ground motions are generated. It can be seen 
from Table 1 that the proportion of ground motions that will produce moderate or more severe damage 
outcomes is increased by 3.62 times after this amplification; and as such, the diversity of the samples is 
enhanced. 

Table 1 – The proportions of ground motions resulting with different damage states 

Damage state None Slight Moderate Extensive Complete 

.
9c-0007

The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0007 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

6 

Before the amplification 62.68% 32.44% 4.29% 0.53% 0.06% 
After the amplification 39.13% 43.22% 13.16% 2.91% 1.58% 

 

Step 2. Adjustment of duration: Before the generation of TFD graphs, it’s necessary to make the 
durations of all ground motions uniform. Otherwise, the same point on each graph will have different 
meanings. Considering that most urban buildings do not exceed 30 floors. The fundamental periods of 
buildings can be estimated with the simple Equation (1) [31]: 

NT 1.01   (1) 

where T1 is the fundamental period, and N is the number of floors. Together with the assumption 
adopted on building heights, the fundamental periods of most urban buildings are less than 3 s. 

Again, following the Code for Seismic Design of Buildings (GB 50011-2010) in China [32], the 
durations of ground motions used for NLTHA should be no less than 5 to 10 times of the fundamental 
periods of the target building. Consequently, a 30-sec ground motion duration is sufficient. As such, the 
durations of all ground motions are modified to 30 s. Only the acceleration data from 15 s before to 15 s after 
the occurrence of the PGA are retained. 

The aforementioned tailoring of the ground motions is only carried out for generating the TFD graphs, 
whereas ground motions without any duration adjustment are used for calculating damage states using 
NLTHA. As such, the labels of the samples are not influenced by the adjustments of duration. The mapping 
rules established via CNN are still between the ground motions and the real damage states, and no systematic 
bias is created due to duration adjustments. 

Step 3. Generation of TFD graphs: Continuous wavelet transforms are performed on all processed 
ground motions, and the absolute values of the wavelet coefficients are calculated for each time and 
frequency coordinate. The continuous wavelet transform is performed using the “Complex Gaussian wavelet 
8 (cgau8)” that is available through the Python library named “PyWavelets” [33]. Subsequently, the Python 
library “Matplotlib” is used for generating the TFD graphs from wavelet amplitude data. The horizontal axes 
(time) of all figures range from 0 to 30 s (per the duration adjustment described above). The vertical axes 
(frequency) range from 0 Hz to 20 Hz, which is deemed appropriate for most earthquake engineering 
applications [34, 35]. 

Step 4. Cropping of the TFD graphs: To avoid the interference of axes and labels on the training 
process of CNN, all figures are cropped so that only the TFD data is visible to the CNN. 

3.1.2 Testing Samples 

To guarantee the independence between the training and testing datasets, testing samples are obtained from 
the K-NET database [24] of Japan. Ground motions satisfying the following requirements are used first: (1) 
Motions recorded from January 2011 to January 2019; (2) Motions recorded during earthquakes of 
magnitude 6.0 or above. Since all ground motions from the PEER NGA-West database are recorded during 
or before 2008 [23], there are no duplicate records within the training or testing sets. To ensure that the 
testing set is rich, 1,875 ground motions are chosen as testing samples from the following two categories: (1) 
All ground motions whose PGA are larger than 1 m/s2 (1,246 records in total); and (2) 10% of the ground 
motions (randomly selected) whose PGAs lie in the range of 0.2 m/s2 to 1 m/s2 (629 records in total) 

The prediction accuracy of the testing set is adopted as the key indicator of the performance of the 
proposed CNN method. To this end, the amplitude scaling is not carried out on testing samples in order to 
minimize the noise or other errors, but the remaining steps of pre-processing (duration adjustment, 
generation and cropping of TFD graphs) are still carried out for the testing set. 

3.2 Establishment of CNN and prediction results 
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CNN is a powerful tool for processing image data. The typical structure of CNN includes input, output, and 
multiple hidden layers [36]. In the present application, the input layer receives the TFD graphs, and the 
output layer provides the prediction of the damage state of the building for which the CNN is trained. The 
hidden layers are complex, which always include convolutional, pooling, activation, and classification layers. 
In addition, CNN is likely to contain other kinds of layers, such as dropout, flatten, and dense layers. Specific 
functions of these layers have already been illustrated in existing sources (e.g., [37]). 

“TensorFlow” [38] is an efficient and convenient platform in the field of machine learning. Here, a 
CNN containing 18 hidden layers is devised as the reference network based on TensorFlow. The structure of 
this reference network is shown in Figure 3. The sizes of convolution and maximum pooling kernels are 
selected as 3×3 and 2×2, respectively. The activation function is “ReLU”. Other important settings are shown 
in Table 2. 

 
Figure 3 – The structure of the reference network 

The stochastic gradient descent (SGD) method is selected for optimizing the reference network; and 
the “momentum” algorithm is utilized to accelerate convergence [39]. The indicator of “loss” is chosen as 
“categorical cross entropy” [40], which is commonly used for classification tasks. 

To examine the impact of network structures on the predictive ability and training efficiency, 
sensitivity studies are carried out on the reference network, as shown in Table 2. Additionally, to verify the 
rationality of the selected input dimension (sizes of figures, 64 pixels × 64 pixels in this study), another four 
networks are established as the control group. The structures and hyperparameters of these four networks are 
the same as Networks 1, 2, 3, and 5 in Table 2. However, the input dimension (size of figures) is 128 × 128. 
Training of all networks is carried out and the acquired CNN models are tested on the testing set. The 
prediction accuracy and consumed time of the training process are shown in Table 3. Each network is trained 
three times to eliminate the influence of random factors such as the initialization of networks. The maximum 
prediction accuracy among three training cases is recorded each time. 

The following conclusions can be drawn from Table 3: 

(1) The proposed CNN method can predict the damage states of the target building caused by ground 
motions well. The highest accuracy on the testing set is up to 92.64%. 

(2) Networks 3 and 4 have higher predictive ability and are efficient overall. Therefore, these networks 
are suitable for implementing the seismic damage prediction task. The predictive ability of simpler networks 
(such as Networks 1 and 2) is relatively low. Meanwhile, there are more complex networks like Networks 5 
and 6 that require more than 24 hours for training, which offer no significant advantage in terms of accuracy. 

(3) The complexity of the network within a reasonable range is not the controlling factor of accuracy. 

(4) Compared to larger input dimension of 128 × 128, CNN with input dimension of 64 × 64 can save 
70.42% of training time on average; and its prediction accuracy is approximately the same (CNN with 64 × 
64 input dimension is 1.56% higher on average). 
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Table 2 – Adjustments of network structures and values of important hyperparameters 

No. 
Adjustments of network structure 

(Compared with the reference network) 
Number of 

hidden layers 
Values of important 

hyperparameters 

1 Removing hidden layers 3, 4, 9 and 10 14 

Dropout ratio: 0.30 
Learning rate: 0.0100 

Input dimension: 64 × 64 
Batch size: 50 

Maximum iterations: 30 

2 Removing hidden layers 3 and 4 16 
3 Reference network 18 

4 
Copying layers 7 and 8, inserting them 

between layers 10 and 11 
20 

5 
Copying layers 1 and 2, inserting them 

between layers 4 and 5 
20 

6 
Copying layers (1, 2) and (7, 8), inserting them 
between layers (4, 5) and (10, 11), respectively 

22 

Table 3 – Consumed time and prediction accuracy of different networks 

No. 
Number of 

hidden 
layers 

Experimental group 
(Input dimension: 64 × 64) 

Control group 
(Input dimension: 128 × 128) 

Accuracy (%) Time (h) Accuracy (%) Time (h) 
1 14 88.0 8.9 87.5 36.1 
2 16 88.8 12.6 90.7 47.9 
3 18 92.6 18.9 87.5 61.5 
4 20 91.5 22.3 - - 
5 20 91.3 26.6 88.6 72.5 
6 22 91.6 29.2 - - 

4. Detailed analysis 

4.1 Sensitivity studies on hyperparameters 

“Dropout ratio” and “Learning rate” are two important hyperparameters for CNN, which may affect the 
predictive ability and the training efficiency of networks. The dropout ratio mainly influences the 
generalization ability of the network, which enables the network to avoid overfitting somehow and has been 
widely recognized in existing studies [41, 42]. Learning rate is also an important hyperparameter which 
affects the updating of networks. Using a higher learning rate may accelerate the training process. But if this 
value is excessive, it will be difficult or even impossible for the network to converge because of the repeated 
fluctuations around the extreme points. 

To discuss the impact of dropout ratio on predictive ability, 40 networks with four different structures 
(Networks 2 to 5 in Table 2) are trained and tested. Srivastava et al. [42] point out that setting the dropout 
ratio to 0.5 is ideal for avoiding overfitting. However, networks with lower dropout ratios may retain more 
useful information. Therefore, the values of setting dropout ratio values from 0.05 to 0.50 are examined. 
Specific values of the dropout ratio and corresponding results are shown in Table 4. 

Besides, to explore the influence of learning rate, another 28 networks with four different structures 
(Networks 2 to 5 in Table 2) are also trained and tested. The values of the learning rate vary from 0.0025 to 
0.0175. Specific values of the learning rate and the corresponding results are shown in Table 5. 

The following conclusions can be drawn from Tables 4 and 5: 

(1) Adjustments of dropout ratio and learning rate do not have a significant influence on the prediction 
accuracy. Neither hyperparameter is the controlling factor of predictive ability. 
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(2) For the successful training processes in this study, the accuracy within ten iterations can be quite 
close to that of the optimal model. The occurrence of the optimal model is delayed when the learning rate is 
too small (e.g., 0.0025). However, the selection of maximum iterations as 30 times is still sufficient. 

Table 4 – Values of the dropout ratio and corresponding results 

Dropout ratio No. Accuracy (%) No. Accuracy (%) No. Accuracy (%) No. Accuracy (%) 
0.05 

2 

89.3 

3 

90.7 

4 

88.6 

5 

88.5 
0.10 89.7 89.1 89.3 89.3 
0.15 89.6 89.0 87.1 89.6 
0.20 89.2 88.2 87.9 88.4 
0.25 88.3 89.9 90.3 92.3 
0.30 88.8 92.6 91.5 91.3 
0.35 87.7 89.0 90.1 89.6 
0.40 86.6 89.1 89.6 88.3 
0.45 88.2 88.2 88.1 90.8 
0.50 89.4 88.3 89.5 89.3 

Note: “No.” means the number of network structures as shown in Table 2. 

Table 5 – Values of the learning rate and corresponding results 

Learning rate No. Accuracy (%) No. Accuracy (%) No. Accuracy (%) No. Accuracy (%) 
0.0025 

2 

87.1 

3 

88.7 

4 

89.7 

5 

88.4 
0.0050 87.8 89.5 89.2 89.5 
0.0075 88.1 89.0 88.3 90.3 
0.0100 88.8 92.6 91.5 91.3 
0.0125 86.6 88.2 89.3 89.7 
0.0150 87.4 89.4 88.9 90.6 
0.0175 86.1 88.2 89.3 88.4 

 

In addition, the training process of CNN has a certain probability of failure to completion. 250 more 
cases are submitted in order to analyze the impact of network structure and learning rate on the failure 
probability. It can be seen that the more complex the network is, the higher the probability of failure is. In 
addition, for networks with the same structure, larger learning rate clearly leads to a higher probability of 
failure and thus reducing the training efficiency. Therefore, the recommended range of learning rate is 
0.0050 to 0.0100. 

4.2 Analysis of Prediction deviations 

The proposed method has outstanding predictive ability and training efficiency. However, although the 
overall prediction accuracy is high, the deviations on some samples may be unacceptable. Therefore, it 
should be considered during model selection. After taking the prediction deviations into consideration, four 
models with the best performances are selected from all the CNN models acquired within 10 iterations and 
corresponding deviations are analyzed (as shown in Table 6). 

It can be seen from Table 6 that the best models can not only predict the damage states of most 
samples correctly, but also limit the prediction deviations of all the remaining samples within ±1 level. Given 
that the evaluation of seismic damage level has inherent randomness, the deviations are acceptable to some 
extent. For example, two RC frames with the maximum inter-story drift ratio (IDR) of 1.99% and 2.01% are 
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identified as “moderate damage” and “extensive damage”, respectively [4]. However, the maximum IDRs 
only differ by 0.02%, which is quite common and acceptable. Consequently, the proposed method has high 
prediction accuracy and acceptable deviation. Thus, it is valuable in practical applications. 

Table 6 – Detailed information and prediction deviations of selected models 

Network Series Dropout ratio Learning rate 
Proportion of samples with different deviations 

0 level ±1 level other 
2 0.20 0.0100 88.4% 11.6% 0.0% 
3 0.30 0.0125 88.2% 11.8% 0.0% 
4 0.05 0.0100 88.6% 11.4% 0.0% 
5 0.10 0.0100 89.3% 10.7% 0.0% 

 

4.3 Efficiency of the proposed method 

To evaluate the computational efficiency of the proposed method, the consumed time of the CNN models are 
analyzed. Noting that the training and testing of networks are fully completed before the earthquake, thus 
they do not influence the prediction efficiency during emergency response. 

Ten ground motions are randomly selected from the 1,875 testing samples for the analyzing of the 
predicting efficiency. A selected CNN model is preloaded on the prediction platform. Once the measured 
ground motions are transmitted to the prediction platform, the entire process—including pre-processing, data 
input and predicting—is carried out automatically. All predictions and calculations are conducted on a 
regular computing workstation (with an “Intel Xeon Gold 6154 @ 3.00 GHz” CPU and no GPU).  

The CNN model only takes approximately 0.5s to fulfill the seismic damage prediction of each ground 
motion (including loading and pre-processing of ground motions). The proposed method is, therefore, much 
faster than the NLTHA method (e.g., [4, 9, 10]) based on this empirical observation. Considering the high 
efficiency of the proposed method, together with the fact that the NLTHA requires large-scale computational 
resources to be readily available, the CNN-based approach appears to be far more amenable for rapid 
predictions of structural damage. 

5. Conclusions 

A post-event seismic damage assessment method based on CNN is proposed in this study, which takes the 
TFD graphs of ground motions as input. Based on the proposed method, real-time seismic damage prediction 
study on a typical 3-story special moment RC frame is carried out. The best way of constructing a CNN and 
the selection of the hyperparameters are discussed. The following conclusions can be drawn in this study: 

(1) The CNN-based method has an acceptable prediction accuracy. For the case study, the prediction 
accuracy is up to 92.64%. Besides, the proposed method is also real-time. It only takes approximately 0.5s to 
finish the seismic damage prediction of each ground motion. 

(2) The deviations of the predicted seismic damage states can be controlled well. For the one-building 
case study, deviations among samples that are not correctly predicted are all limited within ±1 level. This 
characteristic further highlights the potential practical value of the proposed method. 

(3) The complexity of the CNN networks should be moderate (such as Networks 3 and 4 in Table 2). 
The recommended dimension of the input figures for training CNN is 64 pixels × 64 pixels. The 
recommended range of learning rate is 0.005 to 0.01. The value of dropout ratio doesn’t have significant 
influence on this task. 
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The economic losses and casualties caused by earthquakes are closely related to the damage states of 
the target building or region. Therefore, on condition that the damage state is acquired through the proposed 
method, further loss and casualty assessments are feasible based on existing methods (e.g., [43, 44]). 
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