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Abstract 
Availability of detailed damaged building information is crucial for post-seismic recovery and damage assessment after 
large-scale earthquakes. Currently, damaged building information is often collected by trained municipal officers and 
experts of earthquake engineering at the cost of great time and human resource. To overcome costly challenges, remote 
sensing technologies are often used for building damage mapping. The popular approaches include use of optical and 
SAR (Synthetic Aperture Radar) satellite imagery. In addition, boosted by surging computational power and 
unprecedented progression of artificial intelligence based technologies, machine learning as well as deep learning methods 
for earthquake damage mapping are quickly introduced and showed their promising results.  

However, the damage grades of the affected buildings are evaluated by not only appearance of buildings but also 
their inclinations in Japan. In other words, fine-grained geometrical information is needed to assess the building damages. 
Satellite imagery such as optical and SAR are merely able to provide bird-eye-view images that contain less geometrical 
information of the buildings. On the other hand, airborne LiDAR (Light Detection and Ranging) technology is able to 
acquire precise 3-dimensional information in the form of point cloud from disaster-affected area immediately, which 
greatly widens the possibility of rapid and detailed information acquisition for emergency response and post-event 
recovery. Existing approaches adopting LiDAR data tend to convert 3D point cloud into grid-based DSM (Digital Surface 
Model), and thus such a conversion loses geometrical information through sampling from irregularly distributed points 
to regular grid, which is crucial to fine-grained building damage recognition. Besides, suitability of their approaches are 
limited to apply on such geometry-based damage evaluation framework.  

Another challenges that hinder the application of powerful machine / deep learning based methods on building 
damage mapping are the lack of precisely annotated dataset. In spite of their surprising successes on various computer 
vision related tasks, machine / deep learning algorithms are usually provided with large-scale dataset in order to learn the 
meaningful pattern from data. Even though such large-scale dataset for building damage mapping exists for satellite 
imagery, there is no 3D point cloud dataset for the task.  

Therefore, in order to stimulate more suitable application of machine / deep learning on building damage mapping, 
this study created post-event LiDAR point cloud dataset by manually assign each point of buildings a damage grade label. 
To the best of our knowledge, this is the first trial of creating large-scale 3D point cloud dataset for damage mapping 
purpose. In addition, this paper presents a quantitative evaluation of standard 3D-based machine / deep learning methods 
on point cloud dataset for baseline testing. The point cloud data was acquired by airborne LiDAR on 23 April 2016 
following the mainshock activity of the 2016 Kumamoto Earthquake. The resulting annotated dataset contains common 
urban classes such as ground and tree while it includes damaged building classes defined according to their damage grades 
as well. We firstly describe the annotation method for creating dataset and basic statistics to demonstrate the 
characteristics of created dataset. We then provide baseline experiments and analysis under different classification 
settings. We believe that created dataset and insights from baseline experiments are valuable for future research. 
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1. Introduction 

Earthquakes are one of the most catastrophic category of natural disasters that bring great damages to mankind. 
Taking 2016 Kumamoto Earthquake in Japan as an example, it caused more than 3000 casualties including 
273 people were killed [1]. It has also caused tremendous damages to buildings in the affected area, which 
strongly slowed down the recovery process and imposed huge financial burden to the affected citizens as well 
as involved municipals. Although it is difficult to predict and avoid earthquakes, it is possible to react to it 
effectively in order to assess the damage and quickly recover from it. For its ability to capture data from a 
distant sensor platform, remote sensing technologies are frequently used for monitoring and evaluating natural 
disasters. For example, Matsuoka and Yamazaki used SAR (Synthetic Aperture Radar) intensity images to 
assess the building damages caused by 1995 Hyogoken-Nanbu earthquake [2].  Tong et al. examined the use 
of pre- and post-event high-resolution optical imagery to detect damages due to the May 2008 Wenchuan 
earthquake [3]. Additionally, Moya et al. used grid data converted from LiDAR (Light Detection And Ranging) 
point cloud to analyzed the building damage due to the 2016 Kumamoto earthquake [4].  

Recently, increasing use of machine / deep learning technologies in computer vision domain has also 
made profound impact on image-based natural disaster-induced damage assessment. For instance, given high-
resolution SAR imagery, Wieland et al. formulated building damage detection as a change detection using 
SVM (Support Vector Machines) to classify damaged buildings into different damage levels [5]. Furthermore, 
powered by the surprising success of CNN (Convolutional Neural Network), Xu et al. managed to show the 
generalization ability of several deep learning based architecture across different events [6].  

However, Unified Loss Evaluation Method (ULEM) [7] defined by Cabinet Office of Japan for 
earthquake damage grade assessment calculates the damage score according to visual appearance including 
building parts as well as inclinations. The satellite imagery based approaches are merely able to provide bird-
eye-view images that contains less geometrical information of buildings, e.g., height and inclinations. 
Therefore, their suitability is limited for damage grade assessment. On the other hand, LiDAR point cloud data 
can capture precise geometry of damaged buildings, and thus it has more potential to detect and recognize 
earthquake induced damages. Unfortunately, though there is existing large-scale satellite imagery dataset for 
damage recognition [7], the 3D point cloud dataset with accurate annotation for damage mapping does not 
exist.  

Therefore, to stimulate the use of suitable 3D machine / deep learning approach for 3D damage mapping, 
this study aims at making following contributions: 

• Create first post-event 3D point cloud dataset for 3D damage mapping (preliminary) 

• Baseline test using the created dataset  

We experimentally created point cloud dataset for exploring the possibility of 3D building damage 
mapping. To the best of our knowledge, this is the first point cloud dataset created for 3D damage mapping. 
The damage grades to which each point data belongs were annotated manually according to the result of field 
survey conducted after mainshock event of 2016 Kumamoto earthquake [9]. In addition to the defined damage 
grade in the field survey, we assigned “story-collapsed” damage class in order to provide more insights into 
the nature of building damage according to the results provided by the work of Kawabe et al. [10]. For baseline 
test purpose, traditional as well as cutting-edge machine / deep learning algorithms were adopted for several 
differently defined damage classification baseline experiments. Additionally, we repeated same classification 
procedures using the result of second stage field survey for comparing the effect of different ground truth. We 
believe that created dataset with its annotation method and baseline experiments will provide valuable insights 
for future earthquake damage mapping.  

2. Data source 

2.1 Post-event LiDAR dataset 
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The post-event LiDAR dataset [11] is acquired on 23 April 2016 following the mainshock activity of 
Kumamoto earthquake. This LiDAR point cloud dataset has the point density of 4.47 pts/m2 covering the 
central part of Kumamoto Prefecture including Mashiki Town where the severest building damage occurred. 
In this study, the annotation regions were experimentally selected from the central area of Mashiki Town.  

2.2 Damage survey data 

After the event, local governments in Kumamoto Prefecture have carried out the filed survey in order to assess 
the building damages and issue the disaster-victim certificate to affected citizens by which they were able to 
receive various aids from local governments [12]. In Mashiki Town, this field survey was conducted in two 
stages. The first stage investigation assessed the damage by viewing the appearance, measuring the inclination 
and subsequently damage degrees of buildings were calculated by weighted summation of damage ratio from 
roof, walls and base of buildings according to ULEM. Note that in the first stage investigation, all the procedure 
was conducted outside the building. On the other hand, the second stage investigations were conducted in the 
same manner except for the fact that the weighted summation of damage degrees were calculated from both 
viewing the damage status from inside and outside the building, and thus more building parts such as pillars 
and ceilings were considered. The second investigations were implemented only when the victims were not 
convinced by the result of first stage investigation.  

The recorded damage degrees are “no” damage, “minor” damage, “moderate –” damage, “moderate +” 
damage and “major” damage, respectively. All the investigation results were digitized along with the GPS 
locations indicating the approximate location of surveyed buildings. In addition to this classification of damage 
degrees defined by the Cabinet Office of Japan, Kawabe et al. has created “story-collapsed” building dataset, 
which originally belongs to “major” damage category, by examining external photographs of damaged 
buildings based on the field survey results provided by Mashiki Town government. In this paper, these two 
dataset are used jointly as the ground truth of damage degrees for creating damaged building dataset. 
Specifically, “story-collapsed” buildings in “major” class are re-annotated as “story-collapsed” class. Fig.1 
shows the overview of study area with spatial distribution of annotated damaged buildings.  

 

 

Fig. 1 – Study area and selected region for annotation. The “Damage distribution” shows the overview of 
spatial distribution of damaged buildings in annotated LiDAR dataset 
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3. Annotation detail 

In this section, the detail of annotation as well as challenges encountered during annotation process are 
presented. 

3.1 Annotation process 

Post-event LiDAR point cloud data and Damage survey data are used for creating the 3D point cloud damaged 
building dataset. Concretely, each point of residential buildings in LiDAR point cloud data were assigned one 
of the class from “no” damage, “minor” damage, “moderate –” damage, “moderate +” damage, “major” 
damage and “story-collapsed” damage provided by damage survey data. Firstly, the points belong to a 
particular building were identified according to the GPS coordinate recorded in the damage survey data. Then 
a corresponding damage degree was assigned to all points that belong to the building. In the meantime, non-
residential buildings were also annotated in order to exclude its effect in baseline experiments. The other 
classes such as ground, tree and other non-ground objects were annotated as well and treated as “background” 
class in the baseline experiment phase.  

3.2 Rules and Challenges 

In practice, we found that points belong to roofs of the buildings are densely distributed while the other parts, 
e.g., walls, are sparsely distributed in the LiDAR data. The typical building is shown in first row of Fig.2. 
Furthermore, the type of buildings in the study area are mostly residential houses with some platforms extended 
from walls such as balcony. In such cases, reflected signals from the side of buildings are possibly 
contaminated by some objects such as plants. Therefore, to reduce the erroneous annotations for damaged 
buildings, we have only annotated roofs for those who belong to damage grades excluding “major” damage 
and “story-collapsed” classes. The reason for such exclusion is that for damage grades higher or equal to “major” 
damage usually fail to preserve the original shape due to the earthquake, and hence their roofs as well as the 
debris were also included in annotations when it exists. The example is shown in second row of Fig.2.  

 

 

Fig. 2 – Sample annotated buildings. Left: intensity images of “minor” (top) and “story-collapsed” (bottom) 
building. Middle: annotation results. Red points are building. Right: aerial images of buildings.   

 

Extended	platform	

debris	
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Other challenges were to correctly identify the building points as well as debris from irregularly 
distributed points. We found that it was hard to discriminate the boundary points between buildings and other 
classes such as trees by merely relying on backscatterd amplitude information. Therefore, we also utilized 
Google Earth historical imagery on 30 April 2016 to provide additional color information for assisting us to 
better discriminating objects. Furthermore, some of the GPS coordinate of buildings were showing the 
locations that quite far from the actual ones. For these cases, we used in-situ photographs taken by investigators 
as auxiliary information to make sure the exact correspondence of annotations and damage information.  

Lastly, results of annotations contain both results from first and second stage investigations. Noted that 
ground truth of those buildings that were only investigated once remained same in the second stage 
investigation. The resulting class distribution is shown in Table 1 and oblique overview of the data is shown 
in Fig.3.  

 

Table 1 – Class distribution of annotated dataset 

Class No minor moderate - moderate + major story-collapsed total 

First stage ground 

truth with story-

collapsed (points) 

4,121 346,330 123,924 55,710 221,942 59,590 811,617 

Second stage ground 

truth with story-

collapsed (points) 

3,275 246,269 177,585 53,561 271,337 59,590 811,617 

 

 

 

Fig. 3 – Oblique view of created dataset sample. The points are color coded by their damage grade. 
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4. Baseline evaluation framework 

In this section, the key components of evaluation framework are explained. Firstly, the features used in 
classification was introduced. Subsequently, tested baseline algorithms are briefly explained. Finally, the 
evaluation metrics for classification in this study and implementation details are elaborated. 

4.1 Feature calculation 

In this paper, different types of commonly used features were used for supervised classification tasks. Most of 
the geometrical features were defined by following the work of Thomas et al. [13]. Besides, we defined a few 
additional features as follows: AGL (Above Ground Level) was computed using LAStools [14]; Height 
difference features were computed as the difference between the elevation value of a selected point and the 
lowest point within its 15m radius neighborhood; Instead of color features, which are not available, point-wise 
backscattered amplitude information with its mean and variance in defined neighborhood was computed; 
Return count information was obtained directly from LiDAR data; Horizontal angle feature that represents 
angle between local surface normal with horizontal plane was calculated for all points within 1m 
neighborhood. All the features excluding AGL, Height difference, Amplitude, Return count information and 
Horizontal angle were repeatedly computed for multiple definition of neighborhood to capture multi-scale 
features. The examples of calculated features are shown below in Fig.4. In this paper, the scales were 
experimentally defined as 2m, 4m and 8m, respectively. Therefore, 66 features were used for classification in 
total.  

 

 

Fig. 4 – Example of calculated features: Left: AGL; Middle: Horizontal angle; Right: Linearity 

 

4.2 Algorithms  

In this study, several machine / deep learning algorithms are employed for classifications.  

4.2.1 Random Forests 

Random Forest [15] is a classifier that consists of multiple Decision Trees. Decision tree is a type of methods 
that recursively splits the feature space into a set of rectangles and then fits a value (in the case of regression) 
or a majority vote (in the case of classification). Individual tree is a conceptually simple yet powerful model 
that can approximate highly non-linear relationship of data by choosing the input features and split-point 
(feature value). In the case of classification, Random Forests takes majority vote from all individual trees to 
generate final vote. Improving the performance of a machine learning algorithm is essentially a trade-off 
between model variance reduction and bias reduction. Novelty of Random Forests is to improve the variance 
reduction by reducing the correlation between individual trees in tree growing process. Specifically, this de-
correlation is achieved by random feature sub-sample when deciding a split-point. For further theoretical 
explanation of the algorithm, please refer to [15].  
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4.2.2 LightGBM 

LightGBM [16] is an algorithm developed based on the idea of boosting. Similar to Random Forests, the 
committee of classifiers are involved in boosting. However, instead of getting majority vote as classification 
results, boosting sequentially applies classifiers to the modified version of data. Each data point in the dataset 
fit by a classifier is individually weighted, and these weights are updated during the training process. The main 
idea of boosting is to sequentially apply classifiers to correct the errors made by previous classifiers and thereby 
produce overall good model at last by weighted majority vote. Based on fundamental boosting principle, 
LightGBM additionally implements Gradient-based One-Side Sampling and Exclusive Feature Bundling to 
improve efficiency and scalability of the model. In this study, we adopted LightGBM with Gradient Boosting 
Decision Trees for classification tasks.  

4.2.3 PointNet 

PointNet [17] is a recently proposed deep neural network based algorithms that directly take raw 3D point 
cloud as input. PointNet is an innovative deep neural network that firstly consumes raw point cloud and obtain 
point-wise feature by shared multi-layer perceptrons followed by max-pooling to aggregate individual features 
to generate global features. Then the classification is done by stacking local and global features together, and 
hence both individual point as well as its neighborhood information is considered. This simple and innovative 
idea achieved state-of-the-art performance at the time of publication and it is still a competitive algorithm for 
various tasks.  

4.2.4 DSGCN 

Being different from PointNet, DSGCN (Dynamic-Scale Graph Convolutional Network) proposed by Xiu et 
al. is a deep neural network that take point cloud in the form of dynamically changing k-neighbor graph in 
order to model the complex local neighborhood structures [18]. The k-neighbor graphs are dilated or shrunk 
randomly at each sampling iteration to capture scale-invariant features in a computationally efficient manner. 
Furthermore, different scales of the k-neighbor graphs are combined to generate multi-scale features for final 
predictions. The experimental results showed that DSGCN is accurate while being robust to data corruptions.  

4.3 Evaluation metrics  

Results of classification are typically evaluated by 𝑇𝑃 (true Positive), 𝐹𝑃 (False Positive), 𝑇𝑁 (True Negative) 
and 𝐹𝑁 (False Negative) statistics that derive from confusion matrix. Since the dataset is highly imbalanced, 
the overall performances of the classifiers are measured by 𝑓𝑠𝑐𝑜𝑟𝑒,	which is the harmonic mean of 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 
and 𝑟𝑒𝑐𝑎𝑙𝑙 metrics where 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃) , 𝑟𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)	 and 	𝑓𝑠𝑐𝑜𝑟𝑒 =
2	𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛	×	𝑟𝑒𝑐𝑎𝑙𝑙	/(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙), respectively.  

4.4 Implementation details 

The whole annotated region was divided into 100m ´ 100m tiles. Subsequently, 80% of the tiles were assigned 
as training data while remaining tiles were assigned as validation. The distribution process was completed 
through two stages: Firstly, we have randomly distributed tiles until at least 1 sample of each class exists in 
both dataset; Next, remaining tiles were again randomly assigned until the distribution ratio was achieved. This 
process was repeated 5 times for 5-fold cross validation. For the evaluation, all points were predicted. Noted 
that through all processes, non-residential building points and non-labelled building points (due to lack of 
ground truth) were excluded.  

 For Random Forests and LightGBM, the minimum sample population among involved classes are 
assigned as sample number. The rest of the classes were randomly under-sampled. For PointNet and DSGCN, 
all sampling process were done on-the-fly. We adopted cross entropy as loss function with weights calculated 
using Eq. (1). The training was terminated after 200 epochs with batch size 32.  

 𝑤𝑒𝑖𝑔ℎ𝑡 𝐶 = 	 ln(1.02 + CDEFGH	IJEKHL	MN	OGDCC	P	QI	RℎH	SDRDCHR
RMRDG	IJEKHL	MN	CDEFGHC	QI	RTH	SDRDCHR

) (1) 
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5. Result and discussion 

In this section, experimental results with 5-fold cross validation are illustrated and explained. In total, four 
types of experiments were conducted: “major and story-collapsed” and “other damage” classification, “story-
collapsed” and “other damage” classification, separated damage classification and comparison of classification 
results using first and second stage investigation results. Note that “no” damage buildings were combined with 
“minor” damage buildings because they have too small number of samples.  

5.1 “background”, “major and story-collapsed” and “other damage” classification 

It is of paramount importance to recognize higher grade building damages to rescue people in danger as soon 
as possible. According to Fig.5, the “background” and “other damage” classes are well separated while “major 
and story-collapsed” class scored lower than them. The “background” class is well separated from other classes 
because majority of them are simple objects such as ground and tree. The main misclassifications were 
introduced mainly “major and story-collapsed” class. “major” class contains not only the “crashed” buildings 
but also the buildings with greater inclination or having damage at its base but without visible exterior 
deformation. For the former case, the characteristics of building is closer to “story-collapsed” class while it is 
closer to “other damage” class for the latter case. On the other hand, major ambiguity between “background” 
and “major and story-collapsed” is debris. The classifiers were able to detect debris but increased false alarms 
such as low trees near the houses and ground with large slope.  

 Compared to Random Forests and LightGBM, deep learning based models have lower overall 
performance and increased variance for all classes. This result may due to the small sample population as deep 
learning usually needs more samples than traditional machine learning methods. Another presumable reason 
is imbalanced distribution of training data. Unlike Random Forests and LightGBM, which received same 
number of training samples for each class, the training samples were drawn randomly in every sampling 
iteration. Therefore, the sampled training data should approximately follow original distribution, which are 
extremely imbalanced. Under such a condition, DSGCN outperformed PointNet in every metrics. The increase 
of performance probably attributes to the exploitation of local structures by k-neighbor graph, which can model 
the interactions among neighboring points better than PointNet.  

 

	
Fig. 5 – Classification results of “background”, “major and story-collapsed” and “other damage” 

 

5.2 “background”, “story-collapsed” and “other damage” classification 

To justify the arguments made in the former experiments, in this experiments we combined “major damage” 
into “other damage” class. As a result, Fig.6 illustrates that misclassification of  “other damage”  decreased 
and thus the performance was vastly increased by approximately 0.2 in terms of fscore. This result is consistent 
with our initial arguments. However, the ambiguity between “crashed” “major” class and “story-collapsed” 
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class still exists so as the ground and debris inseparability. The relative high variance of “story-collapsed” class 
is possibly due to the reduction of available training samples since “major” class was moved to “other damage” 
class. This is most obvious for deep learning based models, which scored poorly because of reduced samples. 

 

 

Fig. 6 – Classification results of “background”, “story-collapsed” and “other damage” 

 

 5.3 Separated damage classification 

To investigate separability of each damaged building class, we have implemented six class classification 
experiments. The overall results shown in Fig.7 were consistent with our intuition that extreme cases such as 
“major” and “story-collapsed” are easier to be identified, while intermediate classes are difficult to be correctly 
identified. The misclassification among intermediate classes were proportional to the sample numbers, which 
indicated that the classes are almost inseparable given used hand-crafted features. Despite deep learning based 
methods did not rely on the hand-crafted features, they suffered from insufficient sample populations, and 
hence their performances were not stable. Furthermore, it is most obvious in this classification result that 
multiple damage grade predictions exist in one building, which is impossible in reality.  

 

 

Fig. 7 – Results of separated damage classification 

 

5.4 Comparison of first stage and second stage investigation 

In this experiments, we investigated the effect of using different ground truth using only LightGBM for 
experimental purpose. Fig.8 shows that the first and last classification result was showing performance changes 
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that positively correlated to the number of shift of damage grade due to second investigation results presented 
in Table 1. This indicates that classifier’s performance is highly dependent on the number of samples, which 
means either the number of samples are insufficient or the current features set are ineffective for damage 
mapping. For the results in the middle column, the classification results were almost identical because all the 
classes involved were not changed before and after second stage investigation. 

 

 

Fig. 8 – Comparison of classification results using first and second stage investigation ground truth 
(LightGBM) 

6. Conclusion 

In this study, the first 3D post-event LiDAR dataset was created for 3D building damage mapping. The detailed 
annotation method and related challenges were presented. Subsequently, experiments using different 
classification settings are conducted for baseline tests. The results revealed that it is still challenging to obtain 
good result in terms of used performance metrics given commonly used 3D hand-crafted features or deep 
learning algorithms. We believe that our attempt to create dataset and insight from several baseline experiments 
under different classification settings are valuable for future research on 3D based damage mapping. Future 
works include continue generating more annotations as well as developing point cloud based algorithms / 
features for 3D damage mapping.  

7. Acknowledgements 

This research was supported in a part by “the Tokyo Metropolitan Resilience Project” of the Ministry of 
Education, Culture, Sports, Science and Technology (MEXT) of Japanese Government and the National 
Research Institute for Earth Science and Disaster Resilience (NIED). This work is based on data services 
provided by the OpenTopography Facility with support from the National Science Foundation under NSF 
Award Numbers 1833703, 1833643, and 1833632. Digitized building and road data is provided by Geospatial 
Information Authority under the Ministry of Land, Infrastructure, Transport and Tourism of Japan. Google 
Inc. provided the historical imagery of the annotated on Google Earth. 

8. References 
[1] Cabinet Office of Japan. (2019). On the damage situation of 2016 Kumamoto regional earthquake in Kumamoto 

Prefecture, http://www.bousai.go.jp/updates/h280414jishin/pdf/h280414jishin_55.pdf (in Japanese). 

[2] Matsuoka, M., & Yamazaki, F. (2004). Use of satellite SAR intensity imagery for detecting building areas damaged 
due to earthquakes. Earthquake Spectra, 20 (3), 975-994. 

[3] Tong, X., Hong, Z., Liu, S., Zhang, X., Xie, H., Li, Z., … & B, Feng. (2012). Building-damage detection using pre-
and post-seismic high-resolution satellite stereo imagery: A case study of the May 2008 Wenchuan earthquake. ISPRS 
Journal of Photogrammetry and Remote Sensing, 68, 13-27. 

[4] Moya, L., Yamazaki, F., Liu, W., & Yamada, M. (2018). Detection of collapsed buildings from lidar data due to the 
2016 Kumamoto earthquake in Japan. Natural Hazards and Earth System Sciences, 18(1), 65. 

9c-0009 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0009 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

11	

[5] Wieland, M., Liu, W., & Yamazaki, F. (2016). Learning change from synthetic aperture radar images: Performance 
evaluation of a support vector machine to detect earthquake and tsunami-induced changes. Remote Sensing, 8 (10), 
792. 

[6] Xu, J. Z., Lu, W., Li, Z., Khaitan, P., & Zaytseva, V. (2019). Building Damage Detection in Satellite Imagery Using 
Convolutional Neural Networks. arXiv preprint arXiv:1910.06444. 

[7] Cabinet Office of Japan. (2013). Operational guideline for damage assessment of residential buildings in disasters, 
http://www.bousai.go.jp/taisaku/pdf/h3003shishin_all.pdf (in Japanese). 

[8] Gupta, R., Hosfelt, R., Sajeev, S., Patel, N., Goodman, B., Doshi, J., ... & Gaston, M. (2019). xBD: A Dataset for 
Assessing Building Damage from Satellite Imagery. arXiv preprint arXiv:1911.09296. 

[9] Yamazaki, F., Suto, T., Liu, W., Matsuoka, M., Horie, K., Kawabe, K., ... & Inoguchi, M. (2019). Development of 
fragility curves of Japanese buildings based on the 2016 Kumamoto earthquake. 2019 Pacific Conference on 
Earthquake Engineering, Auckland, New Zealand. 

[10] Kawabe, K., Horie, K., Inoguchi, M., Matsuoka, M., Torisawa, K., Liu, W., & Yamazaki, F. (2020). Extraction of 
Extraction of Story-collapsed Buildings by the 2016 Kumamoto Earthquake Using Deep Learning. Proceedings of 
17th World Conference on Earthquake Engineering, Sendai, Japan (in press). 

[11] Chiba, T. (2018).  Post-Kumamoto earthquake (2016) rupture lidar scan airborne lidar survey. Air Asia Survey Co., 
Ltd, distributed by OpenTopography. Retrieved from https://doi.org/10.5069/G9SX6B9T 

[12] Mashiki Town Government. (2017). Review report on the response to the 2016 Kumamoto earthquake, 
https://www.town.mashiki.lg.jp/bousai/kiji0032410/3_2410_1633_up_j7cvpcog.pdf (in Japanese). 

[13] Thomas, H., Goulette, F., Deschaud, J. E., & Marcotegui, B. (2018). Semantic classification of 3D point clouds with 
multiscale spherical neighborhoods. 2018 International Conference on 3D Vision (3DV), Verona, Italy. 

[14] Martin Isenburg. (2019). LAStools - efficient tools for LiDAR processing. https://rapidlasso.com/lastools/ 

[15] Breiman, L. (2001). Random forests. Machine learning, 45 (1), 5-32. 

[16] Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., ... & Liu, T. Y. (2017). Lightgbm: A highly efficient 
gradient boosting decision tree. Advances in neural information processing systems, Long Beach, U.S. 

[17] Qi, C. R., Su, H., Mo, K., & Guibas, L. J. (2017). Pointnet: Deep learning on point sets for 3d classification and 
segmentation. Proceedings of IEEE conference on computer vision and pattern recognition, Honolulu, U.S. 

[18] Xiu, H., Shinohara, T., & Matsuoka, M. (2019). Dynamic-Scale Graph Convolutional Network for Semantic 
Segmentation of 3D Point Cloud. 2019 IEEE International Symposium on Multimedia (ISM),San Diego, U.S. 

9c-0009 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0009 -


