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Abstract 

A survey of the existing literature is conducted in this paper to systematically present the progress and challenges of 

implementing ML in the earthquake engineering domain. The state-of-the-art review indicates to what extent ML has 

been applied in four topical areas of earthquake engineering, including seismic hazard analysis, system identification 

and damage detection, seismic fragility assessment, and structural control for earthquake mitigation. Moreover, two 

case studies have been presented in more depth to exemplify the capabilities of ML techniques in tackling two problems 

in earthquake engineering, which are difficult to solve using traditional approaches. Finally, research challenges and the 

associated future research needs are discussed. In general, ML has emerged as a promising tool to solve various 

challenging problems in earthquake engineering, while significant opportunities still exist to accelerate their 

applications. Researchers working on the cross-field of ML and earthquake engineering are encouraged to embrace the 

next generation of data sharing and sensor technologies, implement more advanced ML techniques, and develop 

physics-guided ML models. 
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1. Introduction 

Machine learning (ML) is a field of study that gives computers the ability to learn without being explicitly 

programmed [1]. Two primary classes of ML algorithms are supervised learning and unsupervised learning. 

In supervised learning, prior knowledge of the labeled dataset is used to recognize a pattern or make general 

predictions. Conversely, unsupervised learning aims to infer the natural structure present with a set of data 

points without relying on label characteristics. 

 ML and other advanced soft computing tools have shown great promise in solving challenging 

problems in civil engineering, where several review works exist in the literature [2–9]. Some of these review 

studies have touched on a few of the ML applications in earthquake engineering. However, a comprehensive 

review is lacking in this area. As a result, it remains unclear to what degree ML has permeated the 

earthquake engineering domain, enabling and advancing research or supporting decision makers to mitigate 

seismic effects on civil structures. To this end, prominent academic databases, including Web of Science, 

Engineering Village, and Wiley Online Library, are used to search the publications that have titles or 

keywords consisting of ML algorithms in an earthquake engineering context. As shown in Fig. 1, the search 

results indicate that nearly two hundred relevant publications are now available, with a clear exponential 

growth in publications that intersect these two fields. 

 

Fig. 1 – Accumulated number of research publications on the use of ML algorithms in earthquake 

engineering 

 This paper reviews the literature by subdividing earthquake engineering domain into four topic areas: 

(1) seismic hazard analysis; (2) system identification and damage detection; (3) seismic fragility assessment; 

and (4) structural control for earthquake mitigation. ML techniques and their four areas of applications are 

investigated in detail in order to understand the current state of the field, disclose the most popular ML 

methods, elucidate connections across various studies, and pave the path to promote broader and more 

fundamental ML advances in solving related research issues in earthquake engineering. Moreover, two case 

studies are discussed in depth to exemplify that ML techniques have the capability to tackle complex 

problems that are challenging to solve using traditional methods. Finally, a discussion of existing challenges 

and future opportunities concludes the paper in anticipation of the future growth of ML applications in the 

earthquake engineering domain. 

2. Seismic Hazard Analysis 

Seismic hazard analysis consists of the studies that predict the level of ground shaking and its associated 

uncertainty at a given site or location. In addition, the use of ML tools to evaluate soil liquefaction potential 

and predict the liquefaction-induced lateral spread displacement is considered within this area. 

2.1 Ground motion prediction and generation 
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As opposed to conventional empirical methods that rely on predefined mathematical structures to derive 

ground motion prediction equations (GMPEs), ML methods can eliminate such constrains and develop 

parametric or non-parametric models to predict different intensity measures of ground motions. As shown in 

Fig. 2, ML studies in predicting GMPEs benefited from the availability of the strong motion databases in 

Taiwan, Turkey, Iran, Europe, western United States (i.e., the NGA and NGA-West2 database), and central 

America for induced earthquakes. Time-domain intensity measures, such as peak ground acceleration (PGA), 

peak ground velocity (PGV), and peak ground displacement (PGD), and frequency-domain measures such as 

pseudo-spectral acceleration (PSA), were predicted as functions of three to five significant predictors, 

including moment magnitude of the earthquake, source-to-site distance, the average shear-wave velocity of 

the site, faulting mechanism, and focal depth. The ML tools utilized in GMPEs include the artificial neural 

network (ANN), genetic programming (GP), multi-expression programming (MEP), support vector 

regression (SVR), as well as other methods listed in Fig. 2 [10,11]. In particular, the newly compiled NGA-

West2 strong motion database [12], consisting of 21,336 recordings from 599 shallow crustal earthquakes, 

has significantly advanced the ML research in GMPEs. 

 

 

Fig. 2 – ML framework developed for predicting ground motion attenuation equations 

2.2 Soil liquefaction potential and liquefaction-induced lateral spread 

Two areas of ML applications in soil liquefaction research include (1) the triggering of soil liquefaction and 

(2) the prediction of liquefaction-induced lateral spread. First, as shown in Fig. 3, ML techniques outperform 

empirical studies in more objectively capturing the nonlinear and multi-dimensional relationship between the 

critical inputs and the triggering of soil liquefaction. Based on Cone Penetration Test (CPT) and Standard 

Penetration Test (SPT) databases, various ML methods have been explored to identify the boundary that 

separates liquefaction and non-liquefaction. These methods include support vector machine (SVM), ANN, a 

combination of kernel Fisher discriminant analysis (KFDA) with SVM, a combination of ANN and response 

surface model (RSM), random forest (RF), stochastic gradient boosting (SGB), generalized linear model 

(GLM), and evolutionary polynomial regression (EPR) (e.g., [13,14]). 

 Moreover, liquefaction-induced lateral spreads involve a large number of influential factors, including 

earthquake magnitude, fault-to-site distance, and local soil profile information such as the slope of the 

ground and the fine content and particle sizes of liquefiable sediments. Prediction of lateral displacement 

under soil liquefaction has been improved by developing different ML tools, which include multilinear 

regression (MLR), ANN, a hybrid neuro-fuzzy procedure, SVR, multivariate adaptive regression splines 

(MARS), RF, GP and evolutionary computing (EC), and multilayer perceptrons (MLPs) and the adaptive 

neuro-fuzzy inference system (ANFIS) (e.g., [15,16]). 

 The data quality of the case history datasets significantly affects the effectiveness of using ML models 

to predict the lateral spread displacement. In particular, history datasets contain considerable subjective 
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information, which inevitably prevents an explicit mapping between the inputs and the lateral displacement 

outputs. As a consequence, most of the lateral spread regression models have a prediction accuracy within 

200%; namely, the predicted displacements vary from 50% to 200% of the observed values. 

 

 

Fig. 3 – Overall framework for the evaluation of soil liquefaction potential using ML methods 

3. System Identification and Damage Detection  

The topic area of system identification comprises a collection of studies that utilize ML to emulate a 

structural system and predict its deterministic seismic response; and damage detection is broadly defined as 

the use of ML models to recognize, classify, and assess seismic damage to civil structures. 

3.1 System identification 

Based on data resources, ML applications in system identification can be classified into two subareas. First, 

laboratory tests on reinforced concrete (RC) structures have provided one source of data that enables ML 

methods to identify their failure modes, strength, capacities, and constitutive behaviors [17,18]. The adopted 

ML models include, but are not limited to, logistic regression (LR), least absolute shrinkage and selection 

operator (LASSO), discriminant analysis, K-nearest neighbors, naïve Bayes classification, SVM, decision 

tree (DT), RF, extreme learning machine (ELM), and multi-output least-squares support vector machine 

(MLS-SVMR). Hybrid methods that couple ANN with wavelet analysis and fuzzy logic have also been 

examined to simulate the seismic behavior of building frames [19]. The second group of studies in system 

identification deals with the datasets from numerical simulations. To this end, ML methods, particularly 

ANNs, have been verified to be effective in replacing finite element modeling of civil structures [20]. 

Moreover, ANNs have been combined with other soft computing algorithms to minimize the prediction 

error, increase the training speed, and improve the generalization capability [21]. 

3.2 Damage detection 

Data resource is also used as the main trait to subdivide the relevant studies herein. First, ML models have 

been developed to predict structural damage based on post-earthquake linguistic or photographic records, 

satellite imageries, and digital maps [22–25]. For instance, the damaged RC column images collected after 

the 2010 Haiti earthquake have been used by German et al. [23] to develop a procedure that automatically 

detects spalled regions on the column surface and measures the properties of the spalling. Also, a large part 

of the existing literature uses simulated and test data to detect the seismic damage of building structures. As 

an example shown in Fig. 4, ANN has been employed to infer the damage conditions for a variety of 

structures (e.g., [26,27]). ML has also been utilized to link the seismic damage patterns of buildings to the 

residual structural capacity indices [28]. The proposed framework integrates seismic demand analysis, 

component damage simulation, and residual collapse capacity estimation on both intact and damaged 

structures. The applied ML algorithms involve DT and RF for safety classification, and LASSO and SVM 

for capacity index prediction. 
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Fig. 4 – Scheme of using ANNs in earthquake-induced damage detection 

4. Seismic Fragility Assessment 

Fragility models are one of the critical components in performance-based earthquake engineering (PBEE) 

frameworks. Recent work supporting fragility and risk modeling of regional portfolios of structures consider 

PSDMs with multiple predictors that reflect the variation across a portfolio and consequently 

multidimensional fragility models [29,30]. First, the high dimensional nonlinear relationship between the 

predictors and the engineering demand parameters (EDPs) of concern can be efficiently quantified through 

ML methods. In this regard, multi-predictor PSDMs have been prevalently derived using RSMs, stepwise 

regression and other regularization algorithms [31]. Other than RSMs, multi-predictor PSDMs have been 

developed using ANN, bootstrapped ANN, SVM, kriging metamodeling, GLM, MARS, K-nearest neighbor, 

naïve Bayes classifier, high dimensional model representation, and RF (e.g., [32]). Once the PSDMs are 

obtained, Monte Carlo simulations can be used to convolve the PSDMs with the capacity models to develop 

multidimensional fragility functions. Such fragility models typically have no explicit mathematical 

expression and cannot be easily reproduced. To address this issue, researchers have used an alternative 

approach to compare the demand versus capacity and generate binary survival-failure samples, from which 

additional models are trained (often adopting the LR model) to develop a parameterized fragility model. 

Relevant studies in this area have developed LR-based fragility models for highway bridges [33], single-

degree-of-freedom structures on liquefiable sand deposit [36], rigid blocks installed with safety devices [37], 

and RC shear walls [38]. 

 Research advances can be further pursued on this portfolio of work to leverage the full capability and 

efficiency of available ML methods. For example, despite that one structure may have multiple EDPs of 

interest, most of the existing work develop separate PSDM for each EDP. To this end, multivariate PSDMs 

that incorporate all EDPs in a single model can not only save multiple rounds of model calibration but also 

capture the correlation among different EDPs in the same structure, resulting in more realistic demand 

models [34]. Also, alternative ML methods should be explored to avoid using too many correlated predictors 

in one PSDM. Recent studies have shown promise in developing sparse PSDMs that consist of a small subset 

of uncorrelated predictors for better accuracy and generalization capability [35]. Moreover, parameterized 

fragility models have been primarily developed through LR, while it remains unclear whether there exist 

other models that can provide significant advantages over existing LR models. 

5. Structural Control for Earthquake Mitigation 

Based on the control mechanism, ML applications in structural control can be further classified as those in 

active control and semi-active control. 

5.1 Active control using ANN 

Considerable studies have explored the soundness of engaging ANN in designing active control schemes to 

alleviate the seismic impacts on buildings, e.g., [39]. As shown in Fig. 5, the neural-controller (i.e., the 
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actuator controlled by the neural network instead of an ad hoc control algorithm) is trained with the aid of the 

emulator neural network, which not only learns the structural behavior but also incorporates the effects of the 

actuator dynamics and sampling period [40]. After the neural-controller is well trained, it can generate 

appropriate signals to the actuator based on the feedback signal from the sensors. 

 The neuro-controller concept was further developed in several studies that enhance the efficiency and 

robustness of the active control scheme [41]. Improvements have been made in the following areas: (1) the 

use of a cost function to train the ANN [42]; (2) the use of a sensitivity evaluation algorithm to replace the 

emulator neural network for saving the training time [43]; (3) the development of a counter propagation 

network (CPN) to realize unsupervised learning [44]; (4) the use of lattice forms in the training pattern to 

save the calculation efforts and accelerate the training process [45]; (5) the utilization of an extended 

minimal resource allocation network to accomplish real-time on-line adaptation of the ANNs. Recently, a 

fuzzy wavelet neuro-emulator model was developed [46] that can predict the nonlinear structural response in 

future time steps only from the immediate past structural response and actuator dynamics. 
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Fig. 5 – Schematics of the training of the neuro-controller with the aid of emulator neural network [40] 

5.2 Semi-active control using ANN 

Semi-active control devices have the capability of adapting to the changes in earthquake loading conditions, 

similar to the fully active systems, yet without requiring access to large power supplies. In this regard, 

interest in the use of ANN has grown remarkably, particularly for structures that are designed with 

magnetorheological (MR) dampers (e.g., as shown in Fig. 6). Contributions include: (1) an ANN model to 

represent the nonlinear differential equations and simulate the dynamic behavior of the MR damper [47]; (2) 

an inverse optimal ANN model to predict the required voltage given the desired force of the MR damper 

[48]; (3) the use of ANN to replicate the damper’s dynamics and induce the MR damper in controlling the 

seismic shaking of non-isolated and isolated structures [49]. 

 

Clipped algorithm

                

Motion
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Signal Structure

 

Fig. 6 – Schematics of the semi-active neuro-control system using MR damper [50] (MR damper schematics 

adopted from Yang et al. [51]) 
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6. Case Studies 

This section presents two case studies to illustrate in depth how ML can be involved in advancing research in 

earthquake engineering. Both studies fall into the category of seismic fragility assessment. The selected cases 

belong to two previous works from the authors, where more technical details can be found in [31] and [29]. 

6.1 Sensitivity of bridge performance to soil-structure interaction (SSI) modeling  

SSI effects are expected to yield a significant alteration on the seismic performance of bridges and structures. 

The typical layout of highway bridges requires consideration of multiple sources of SSI effects during their 

seismic analysis. In particular, the effect of SSI modeling on the seismic performance of highway bridges 

turns out to be a multi-parametric problem, involving various sources of uncertainty in soil properties and 

ground motions. 

 The relative impact of various uncertain SSI parameters on the seismic performance assessment of a 

typical highway bridge in California was presented in a recent study by the authors [31]. Seismic responses 

of a well-instrumented bridge-soil system are analyzed through the development of a rigorous p-y modeling 

approach. Changes are made on the overcrossing to benchmark it against typical designs of similar 2-span 

highway bridges in California (Fig. 7(a)). A probabilistic framework is set up to account for the various 

sources of uncertainty in the modeling of soils. The sensitivity study presented utilizes stepwise and LASSO 

regressions to identify which SSI modeling parameters significantly affect the seismic response of a number 

of different components in the diaphragm and seat abutment bridges, respectively (Fig. 7(b)). The findings of 

the sensitivity study are extended to evaluate the influence of uncertainty treatment in SSI modeling on the 

fragility estimates of the specimen bridges. The relative importance of inherent uncertainty with respect to 

ground motion and various SSI modeling parameters is evaluated by comparing three sets of fragility curves 

developed under increasing levels of uncertainty treatment (Fig. 7(c)). 

 The use of ML techniques (stepwise and LASSO regressions) in this case study indicates that 

structural components such as columns and deck are less sensitive to the SSI parameters, while bridge 

foundations and abutment components are much more influenced by the uncertain parameters for near-

ground soils. In particular, a much stronger interaction is recognized between center bents and end abutments 

for the diaphragm abutment bridge. In particular, uncertainty in SSI modeling parameters plays a significant 

role on the damage estimates and fragility curves of bridge foundations and abutment components, such as 

shear keys, bearings and span unseating (Fig. 7(c)). Fragility curves developed considering only those 

important parameters identified in the LASSO regression are identical to those developed with all parameters 

treated as variables. 

 The application of ML techniques in this study offers an attractive way to determine the proper level 

of modeling fidelity and uncertainty treatment in SSI modeling. The findings can help analysts and bridge 

owners to allocate their computational resources, refine the most significant SSI modeling parameters, and 

develop reliable fragility curves for classes of highway bridges. 

Near ground pile

 eep ground pile

 olumn footing

A utment  ac fill

  
 

(a) (b) (c) 
Fig. 7 – ML applications in assessing the sensitivity of bridge performance to SSI: (a) soil uncertainty 

considered in different zones for numerical analysis; (b) coefficient magnitude ranking of SSI parameters 

using LASSO regression; (c) fragility curves of bridge components considering three levels of SSI modeling 
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6.2 Probabilistic seismic assessment of vertical concrete dry casks 

Continuing and efficient operation of nuclear power plants requires a safe method for the storage of spent 

nuclear fuel (SNF) produced at the nuclear power plants. In the United States as well as many other 

countries, spent fuel pools and independent spent fuel storage installations (ISFSIs) are used for short-term 

and interim storage of SNF, respectively. Vertical concrete dry casks are one of common structures used at 

ISFSIs for the midterm storage. The dry casks are vertical cylinders that typically receive the SNF in a steel 

canister, storing it to cool down by flow of air through the structure and to shield the radioactive radiations 

by layer(s) of concrete (and steel). Since the dry casks are freestanding structures that are not anchored to 

their foundation, they are vulnerable to lateral forces such as earthquakes. Large seismically-induced motions 

may result in collision incidents, potentially leading to release of radioactive materials from the dry casks. To 

enable estimation of the probability of such large motions for various dry cask configurations subjected to 

different seismicity levels, a probabilistic study is performed. 

 Simulation-based methods such as Monte-Carlo simulations often require running a large number of 

models. In this study, however, the results from fewer models are used to develop ML models for the 

maximum horizontal displacement and maximum rocking angle of the vertical concrete dry casks in seismic 

events (Fig. 8): (1) A finite element model of the seismic response of a scaled cask was developed and 

validated against an experimental study [29]; (2) In an experimental design, different configurations of the 

concrete dry casks were paired with selected ground motion records, resulting in 480 finite element models 

of seismic response of the concrete dry casks [29]; (3) Four different ML models, namely RSM, MARS, 

regression tree (RT), and SVR, are trained on the datasets provided by running the finite element models, 

and PSDMs are developed for the key responses of the vertical concrete dry casks in seismic events. The 

results of the training process are presented in Table 1, indicating that while the tested ML models produce 

high R2 values on the training sets, some of them, such as MARS and RT, tend to over-fit the test samples. 

Considering the performance of the RSMs and other features such as transparency and transferability, the 

PSDMs obtained via the RSM are adopted for further analysis, in which the probability of large seismically-

induced motions at different locations in the United States is estimated for various dry cask configurations. 

The results show that the probability of large seismically-induced motions is within the acceptable range in 

the nuclear industry, however, the estimated probabilities are one order of magnitude larger on the West 

Coast [29]. Moreover, the probability of observing large seismically-induced rocking motions on the West 

Coast approaches the acceptable rate in the industry [29], providing insight about the more probable cause of 

failure and effective mitigation actions, such as adjusting the friction at the cas s’  ase or the distance 

between adjacent casks to reduce the probability of subsequent impacts. 
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Fig. 8 – Probabilistic seismic assessment of vertical concrete dry casks using ML-based approach 
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Table 1 – Comparison of the ML models tested for PSDM development for the concrete dry casks 

Response Maximum horizontal displacement Maximum rocking angle 

ML model RSM MARS RT SVR RSM MARS RT SVR 

R2 on training set 0.94 0.98 0.95 0.95 0.88 0.95 0.91 0.91 

R2 on test set 0.93 0.95 0.93 0.95 0.87 0.90 0.88 0.90 

7. Discussions and Conclusions 

This paper reviewed ML applications in four topic areas in earthquake engineering, which include seismic 

hazard analysis, system identification and damage detection, seismic fragility assessment, and structural 

control for earthquake mitigation. Datasets collected from laboratory and field tests, previous earthquake 

events, and numerical simulations have enabled researchers to practice a collection of advanced ML tools. 

Moreover, two case studies, which belong to the previous works of the authors, are presented in more detail 

to exemplify the capabilities of ML techniques in advancing the existing earthquake engineering research. In 

general, the cross field of ML and earthquake engineering is a new but increasingly dynamic area for high 

impact research, where a vast breadth and depth of topics can be investigated. For the purpose of further 

promoting ML applications in earthquake engineering, the potential challenges and associated research needs 

are discussed herein.  

7.1 Data quantity and quality 

To be effective, ML requires large amounts of high-quality data. In certain areas that require high-fidelity 

computational analyses or large-scale field tests, high-quality data points are often limited to hundreds or 

fewer. As is expected, ML in these areas is facing a strong challenge. Note that such data quantity issues 

cannot be easily tackled by switching or developing a more advanced ML model. Also, low data quality 

often leads to inferior ML models in earthquake engineering. To address this data issue, research efforts are 

suggested in the following directions. First, more transparent, accessible, and high-quality data are needed to 

be compiled in a computer-readable form, making a widely accepted platform required to store and share 

such data. Moreover, the time spent running ML is generally much less in comparison with the time to gather 

data, integrate it, clean it, and pre-process it. In this regard, it is vital that in earthquake engineering, there 

exists a community-driven cyberinfrastructure embraced by the community that allows researchers to share 

and analyze data more effectively, integrate diverse datasets, and practice and develop ML tools. One such 

cyberinfrastructure platform is the DesignSafe (https://www.designsafe-ci.org/) [52] that supports natural 

hazards engineering research, through which various recently generated datasets have been uploaded and 

shared, e.g., [53]. Also, since experimental laboratory or field derived databases are limited and initiating 

new large-scale campaigns can be time-consuming and cost-prohibitive, researchers should be encouraged to 

provide more simulation-based data, especially for those that have high quality, are physics-driven, and are 

well-validated against existing test results. Moreover, researchers conducting ML in earthquake engineering 

are expected to increasingly deal with new sources of data generated from other cutting-edge technologies, 

such as wireless sensing, computer vision, internet of things (IoT), smart cities, geographic information 

system (GIS), and quantum computing, etc. Once earthquakes occur, these technologies can provide new 

forms of data on a completely different scale. 

7.2 Implementation and development of ML methods 

Given potential rapid data growth due to above-mentioned technologies, ML is expected to provide a 

tremendous opportunity to systematically advance the research and practice in earthquake engineering. 

However, the next generation of spatiotemporal data, which tend to be large-scale, high-dimensional, 

nonlinear, non-stationary, and heterogeneous, are expected to challenge the capabilities of existing ML 

methods often adopting in the earthquake engineering domain. To this end, more advanced ML techniques, 

such as active learning, reinforcement learning, and deep learning, are needed to (1) characterize the higher-
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order correlation and dependencies within the data; (2) perform efficient and reliable imputation and 

prediction for decision making; and (3) develop scalable learning models for large-scale and time-dependent 

problems. Moreover, there exists an emerging trend for a paradigm shift that requires earthquake engineering 

researchers to consider how to best balance the use of physics-based approaches, which are transparent, 

interpretable, and somewhat predictable, with the use of data-driven ML models that are not unique and 

sometimes hardly interpretable. Distinct from physics-based approaches, ML algorithms produce models that 

are entirely data-driven and cannot alone explain the physical cause-effect mechanisms between variables. 

To be specific, although spurious relationships can be learned for a complex problem that look deceptively 

accurate on training and test sets, the model may perform much worse outside the available labeled data. A 

rational path forward lies in the increasing incorporation of physical knowledge into ML-based earthquake 

engineering studies. Theory-guided ML can be developed through a variety of approaches. Opportunities 

exist to accelerate work along this path. First, domain experts can take the lead in converting raw data into a 

new feature space that reflects better the scientific nature of the underlying problem. Second, an ensemble of 

different ML algorithms, or similar algorithms with different values for their internal parameters, should be 

examined to create a more robust overall model. Third, physical understanding of a problem can be 

increasingly used to design and learn ML models. 

 In summary, despite the growing number of studies every year, the implementation of ML in 

earthquake engineering is still in its early stage when compared with other disciplines. However, supported 

by the next generation of diverse data sharing and sensor technologies, ML has a great promise to 

revolutionize the profession of earthquake engineering. Furthermore, the earthquake engineering community 

has the opportunity to probe unexplored ML algorithms in various contexts, or inspire new ones driven by 

our application needs, while opening dialogue on best practices to integrate physics-based and data-driven 

methods to solve grand challenges in earthquake engineering. 
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