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Abstract 

Ground motion prediction equations (GMPEs) can provide estimates of peak ground motion parameters (e.g., PGA,) by 

considering the effects of earthquake magnitude, distance, site, and source, which is a crucial element in the seismic 

hazard analysis. These equations help to evaluate the mean/median ground shaking effects for the expected levels of 

earthquakes. Thus, many empirical GMPEs were developed based on regression analysis, but they are highly uncertain 

due to the uncertainties of independent variables. To overcome this issue, the artificial neural network (ANN) is applied 

in the field of seismology and earthquake engineering to predict ground motion intensity measures (IMs). However, 

even though the ANN can produce high prediction accuracy, the defects are apparent, such as the database is relatively 

small. As a result, a challenging problem that arises in this domain is whether an artificial intelligence-based method 

can predict the attenuation relationship of ground motion parameters as well as response spectra based on a big database, 

which has not been reported elsewhere. Recently, deep neural network (DNN) has received much attention from 

engineering and is playing a crucial role in providing big data predictive models. Therefore, this study develops a DNN 

trained by the recordings from the PEER NGA-West2 database to predict peak ground motion acceleration (PGA). To 

this end, we collect 20,900 GMs based on the proposed criteria from the PEER NGA-West2 database and randomly 

split them into the training, validation, and testing datasets. The developed model relates PGA to earthquake source to 

site distance, earthquake magnitude, average shear-wave velocity, faulting mechanisms, and focal depth. The prediction 

errors are evaluated by three performance indicators, and the predictive results are compared with five well-known 

empirical models and one artificial neuron network model developed based on the PEER NGA-West2 database. The 

between-event and within-event residuals are calculated and compared with other models. Based on the results, our 

model has the best goodness-of-fit statistics of all the GMPEs we have compared, confirming that the proposed model is 

associated with better predictive power. 

Keywords: ground motion, PGA, ground motion prediction model, deep neuron network 

1. Introduction 

Ground motion prediction equations (GMPEs) can provide estimates of peak ground motion parameters (e.g., 

PGA,) by considering the effects of earthquake magnitude, distance, site, and source, which is a crucial 

element in the seismic hazard analysis. These equations help to evaluate the mean/median ground shaking 

effects for the expected levels of earthquakes. Therefore, scholars are devoting to developing GMPEs based 

on local, regional, or global strong ground motion databases. For example, Esteva and Rosenblueth [1] 

proposed the first ground motion prediction model (GMPM) in which earthquake magnitude and distance are 

included. The proposed model was developed based on the least-squares regression of 46 earthquake records, 

and it can be used to estimate peak ground acceleration (PGA). Similarly, the first GMPM for response 

spectra was derived by Johnson [2] who developed an empirical model based on 23 earthquake records. The 

proposed equations can be used to predict the earthquake pseudo-relative velocity response spectra (PSRV) 

for a given earthquake magnitude and epicentral distance. 

In 2003, the Pacific Earthquake Engineering Research Center (PEER) launched a large project (called 

NGA-West1) [3] that aims to develop next-generation GMPEs for shallow crustal earthquakes in active 

tectonic regions. A strong ground motion database [4] and five GMPEs [5–9] were announced as research 
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results of the project. The latter receives much attention throughout the world and is widely applied to 

research and engineering. However, some problems of GMPEs were exposed over time, such as poor 

prediction accuracy for earthquakes with small magnitude. Therefore, another program [10], called NGA-

West2, was initiated, and a new strong ground motion database [11] and five GMPEs [12–16] were 

published in 2014. For example, Boore et al. [13] proposed GMPEs (hereafter called BSSA14) for PGA, 

PGV, and 5% damped PSA for moment magnitude from 3.0 to 7.9 earthquake events in NGA-West2 and a 

significant improvement was found when comparing with the GMPEs [17] proposed based on NGA-West1. 

There are also many specific GMPEs for local area or countries, such as California [18], Canada [19], 

Eastern North America [20,21], Europe [22,23], Italy [24,25], Japan [26,27], New Zealand [28], and China 

[29,30]. For some regions (e.g., California, Europe, Italy, Japan, China) with sufficient ground motions, an 

empirical GMPE can be derived by using past earthquake records. For example, Chiou et al. [18] selected 

data from the California ShakeMap systems and developed a GMPE in which small-to-moderate shallow 

crustal earthquakes are considered. For some regions (e.g., eastern North America) with insufficient ground 

motions, a stochastic simulation method, called hybrid empirical method [21], was proposed and used to 

develop a GMPE. The results showed that the hybrid empirical method could provide a good prediction 

accuracy. However, the majority of existing GMPEs are derived based on empirical regression analysis of 

recorded strong ground motions. However, coefficients of the independent variables in GMPEs are 

significantly affected by the high nonlinearity and inhomogeneity among the independent variables. 

Moreover, the regression equation is derived on the basis of a predefined linear or nonlinear equation, with 

the assumption of the normal distribution of residuals for testing the developed equation. Hence, the GMPEs 

based on regression analysis are highly uncertain as a result of computational uncertainties and the 

uncertainties of independent variables [31].  

Recently, many new techniques (e.g., artificial intelligence and soft computing) have been applied in 

civil/earthquake engineering and attracted a lot of attention [32–35]. Along these lines, many researchers 

took advantage of these new techniques to model ground motion parameters and response spectra. For 

example, Derras et al. [36] proposed a GMPE for PGA based on the KiK-net data using the artificial neural 

network (ANN), and they concluded that ANN is less sensitive to the dataset than classical methods (i.e., 

least-squares) that were used to obtain empirical GMPEs. After that, ANN has been widely applied in the 

field of seismology and earthquake engineering to predict ground motion intensity measures (IMs). More 

recently, Derras et al. [37] investigated the effect of site-condition proxies on the aleatory variability of 

GMPEs by using an ANN approach based on a total of 1028 recording from the PEER NGA-West2 database. 

A prediction equation was developed and the results were compared with BSSA14 to illustrate its 

performance. As presented above, even though the soft computing methods can produce high prediction 

accuracy, the defects are apparent, such as the database is relatively small. As a result, a challenging problem 

that arises in this domain is whether an artificial intelligence-based method can predict the attenuation 

relationship of ground motion parameters as well as response spectra based on a big database, which has not 

been reported elsewhere. Nowadays, deep neural network (DNN) is receiving much attention from 

engineering (e.g., [38–43]) and is playing a crucial role in developing big data predictive models [44,45]. 

Therefore, one possible way to solve the problem is by using DNN. 

To this end, this paper aims to develop a predictive model for PGA based on the PEER NGA-West2 

database by DNN. First, a total of 20,900 GMs are collected based on the proposed criteria from the PEER 

NGA-West2 database. Then, DNN is adopted to develop the predictive model for the PGA based on the 

collected GMs of which 80%, 10%, and 10% are randomly split into the training, validation, and testing 

datasets, respectively. The performance of the three datasets is assessed by three indicators that are widely 

used in previous investigations. Finally, the predictive power of the DNN model is verified by comparing its 

prediction results with those predicted by the four empirical models as well as an ANN model, and by 

systematically evaluating the between-event residuals and within-event residuals. 

2. Database and performance indicators 

2.1. Database 
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The GM database used herein was built based on the PEER NGA-West2 database [11] which is the 

newest database for shallow crustal earthquakes in active tectonic regions. The following criteria are used to 

build a subset of the PEER NGA-West2 database: 

(1) records having two horizontal components;  

(2) stations with the measured value of VS30; 

(3) earthquakes with the information of magnitude, distance, and site metadata;  

(4) excluding non-free field conditions and low-quality data; 

(5) excluding recordings from earthquakes originating in oceanic crust; and 

(6) excluding earthquakes which have less than four recordings;  

It should be noted that this study used the RotD50 [46] version of the NGA-West2 flatfile [11] where 

the values of PGA, as well as source, site, and path information adopted herein, can be found. Finally, a total 

of 20,900 GM recordings were collected from 429 earthquakes with moment magnitude M ranging from 3 to 

8 and RJB ranging from 0 to 1600 km. Figure 1 illustrates the distribution of magnitude-distance and 

magnitude-soil condition pairs for the selected GMs in this study, respectively. 

 

Fig. 1. Distribution of magnitude-distance and magnitude-soil condition pairs for the GMs from the PEER NGA-

West2 database: (a) magnitude-distance pair; (b) magnitude-soil condition pair. 

2.2. Performance indicators 

To evaluate the prediction accuracy, the correlation coefficient, R, was first calculated, as it can measure 

the degree of linear dependence between the observed and predicted values. The correlation coefficient, R, 

can be mathematically expressed as follows: 
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where y is the total amount of data, y  is the mean observed value, 
prey  is the mean predicted value. 

The value of R equal to 0 means that there is no linear relationship between the observed and predicted 

values, while the value of R equal to 1 indicates that a linear relationship exists between the observed and 

predicted value. The defects of the correlation coefficient, R, are also evident, although it can effectively 

reflect the degree of linear dependence between the observed and the predicted values. For example, R is 

found to be insensitive to the amplitude changes of the predicted values, particularly in the scenario that 
pre

iy are multiplied by a constant. Thus, two additional indicators (i.e., mean square error, mean absolute error) 

were computed to evaluate the prediction accuracy. The mathematical expressions of these two indicators 

can be written as follows: 
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where MSE represents mean square error, MAE represents mean absolute error. 

3. Comparison of the DNN model with the GMPEs model 

The distribution of observed PGA values versus predicted ones using the DNN model are shown in 

Figure 2 for the training, validation, and testing datasets, respectively. The similarity in the scattered data 

distribution for the three datasets indicates a very similar degree of predictive power (i.e., R in Table 1) for 

the datasets, which means that the DNN model achieves a reliable prediction. To check whether the trained 

neural network is overfitted or not, the MSE and MAE are calculated for the training, validation and testing 

datasets respectively, as shown in Table 1. 

 
Fig. 2. Distribution of observed and predicted PGA values for DNN model using the GMs from the PEER 

NGA-West2: (a) training datasets; (b) validation datasets; (c) testing datasets. 

 

Table 1. Comparison of the training, validation, and testing datasets with different performance indicators. 

Datasets R MSE MAE 

Training 0.9566 0.0019 0.0124 

Validation 0.9555 0.0017 0.0122 

Testing 0.9639 0.0025 0.0126 

To verify the validity of the DNN model, the predicted results by the DNN model were compared with 
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those by other GMPEs. There are many available GMPEs in literature, and however, for a fair comparison, 

we only selected the GMPEs proposed based on the PEER NGA-West2 database. Thus, a comparison of the 

proposed DNN model and four well-known GMPEs (i.e., hereafter called ASK14 [12], BSSA14 [13], CB14 

[14], CY14 [15] are presented in Figure 3. Besides, an additional model developed by the ANN approach 

was also selected as a comparison pair (hereafter called ANN [37]). The performance indicators of PGA 

were listed in Table 2.  

 

 
Fig. 3. Distribution of observed and predicted PGA values by six prediction models using the GMs from the 

PEER NGA-West2. 

Table 2. Comparison of the predicted results of the six models for the NGA-West2 with different 

performance indicators. 

Models R MSE MAE 

ASK14 0.9464 0.0020 0.0129 

BSSA14 0.9439 0.0020 0.0133 

CB14 0.9468 0.0019 0.0130 

CY14 0.9467 0.0021 0.0133 

ANN 0.9379 0.0024 0.0141 

DNN 0.9562 0.0019 0.0125 

 

It can be observed from Figure 2 that the DNN model gives better precision as the predicted PGA 

values are closer to the observed ones, compared to other models. The prediction accuracy is also 

corroborated by Table 2 as the DNN model has the highest R values. According to a rational hypothesis, it 

shows a strong correlation between the predicted and observed values when a model has a value of 

correlation coefficient, R, higher than 0.8. Thus, the four empirical GMPEs and the ANN model also achieve 

a high degree of predictive accuracy. Furthermore, the DNN model also presents the lowest errors (i.e., MSE 

and MAE). Therefore, the DNN model demonstrates a better prediction ability even though the five models 

have shown a good prediction performance. 

4. Prediction results and residuals 

4.1. Prediction results 
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For simplicity, the predicted results for the DNN model are only compared to those for the BSSA14 

model in Figure 4 for a strike-slip scenario at a VS30 value of 760 m/s varying with M and RJB, respectively. It 

is shown in Figure 4 that pronounced M-scaling of PGA can be observed for M<6. The amplitude-saturation 

can be seen from the distance attenuation trends that amplitudes are nearly constant in short-distance regions. 

Besides, ground motions with smaller magnitudes will attenuate more rapidly with distance than those with 

large magnitudes due to duration and finite-fault effects. The PGA values for the DNN model show a 

consistent trend with those for the BSSA14 model at short distances, while the differences between the two 

models become visible with the distance increases.  

 

 
Fig.4. Comparison of the PGA from the DNN model with the median from the BSSA14 model for strike-slip 

earthquakes and VS30 = 760 m/s. 

4.2. Between-event and within-event residuals 

The analysis of residuals is a common way to evaluate the performance of predictive models because 

the residuals can reflect the relative predictive error of models. The residuals are usually separated into 

between-event and within-event terms by using the random-effects method [47], as follows: 

    ln ln  GM GM i ijij ij
IM IM    (4) 

where  ln GM ij
IM  and  ln GM ij

IM  are the observed and predicted logarithmic IMGM value for the i-th event 

and j-th GM, respectively,i is the between-event residual,ij is the within-event residual. 

To assess the validity of the DNN model, Figure 5 plots the distribution of between-event residuals with 

respect to moment magnitude. Figure 6 shows the within-event residuals with respect to RJB for PGA. Note 

that a positive residual means the DNN model underestimates the recording, while a negative residual means 

that the DNN model overestimates the recordings. From these plots, no significant bias or trend between 

residuals and predictor variables included in the DNN model can be observed. In general, these residual plots 

clearly indicate that the DNN model is robust and reliable. 

 
Fig. 5. Distribution of between-event residuals for PGA with respect to moment magnitude (M). Error bars 

represent the mean and 95th-percentile confidence limits of the mean binned residuals. 
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Fig. 6. Distribution of within-event residuals for PGA with respect to distance (RJB). Error bars represent the 

mean and 95th-percentile confidence limits of the mean binned residuals. 

5. Conclusions 

The aim of the study is to develop GM predictive models for the PGA based on the PEER NGA-West2 

database. A total of 20,900 earthquake records from 429 global shallow crustal earthquake events with M 3–

8 and RJB 0–1600 km were collected to build the database where 80%, 10%, and 10% of the database were 

randomly split into the training, validation, and testing datasets. Four empirical models and one ANN model 

were selected as comparison pairs. Deep neural network (DNN) was carefully designed, and the validity of 

the DNN model was verified by systematically comparing with the other prediction models. The residuals 

and standard deviations were systemically investigated. Some findings are listed as follows: 

1. Irrespective of the training, validation, and testing datasets, high values of correlation coefficient and 

low values of MSE and MAE were found for the DNN model, indicating that the DNN model is a 

robust and reliable tool which is insensitive to the dataset.  

2. Selected empirical models and an ANN model present a good performance for the PEER NGA-

West2 database, while relatively better performance could be found for the DNN model. 

3. The performance of the DNN model is on par with the BSSA14 model for large magnitudes, while 

the apparent difference for two models can be found for small magnitudes. 

4. No significant bias or trend between residuals and predictor variables included in the DNN model 

can be observed. 
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