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Abstract 
Discovering knowledge from data is a development trend of modern science. In this era of exponential data growth, 
symbolic regression (SR) is playing a greater role in the discovery of knowledge from data. Unlike other machine learning 
“black-box” algorithms, SRs can discover mathematical formulas from data quickly and accurately. When combined with 
domain knowledge, the explicit interpretable formulas may be scientifically meaningful.  

This paper presents an application of SR in the field of civil engineering. Eureqa, a state-of-art SR tool, was used for 
uncovering the underlying design formula of shear resistance of bearing-type bolted connections. In the preliminary 
research phase, the dataset consisted of shear resistance of single bolted connections calculated per Specification for 
Structural Steel Buildings (ANSI/AISC 360-16). Since the yield to strength ratio varies from different steel grades, only 
the case of fy equals 345MPa was considered here. Four independent influencing parameters, the core plate (or intermedia 
plate) thickness t, the core plate width W, the bolt diameter d and the clear distance between bolt hole and the edge of 
core plate lc were selected as the input parameters. And the output parameter is the shear resistance FR. The input 
parameters were preprocessed by nondimensionalization and normalization before training and thus the input data are all 
dimensionless and mapped into the range [0,1]. A 70:30 split of the data in terms of training set and validation set were 
selected. MAE was employed and Eureqa attempts to maximize this quantity in its fits. And CPU-hour was taken as the 
measure of algorithm efficiency.  

Preliminary results show that the candidate formulas obtained are in good accordance with the formula in the design code 
and SR can be used as reliable algorithms for prediction of shear resistance of bearing-type bolted connections, pointing 
to a potential means for both the discovery of physical mechanism from experimental data, as well as the use of further 
developed model for artificial-intelligent-based rapid structural design. The selected four input parameters could fully 
describe the underlying design formula of the considered problem. In addition, some suggestion on the selection of dataset 
scale and operators were provided. 
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1. Introduction  

Bolted connections are critical elements in overall structures.  And bolt connections are quite commonly used 
in steel structures. To evaluate the resistance, codes of different countries, such as AISC 360-16 [1], 
Recommendation for Design of Connections in Steel Structures (AIJ) [2], Eurocode 3 (EN 1993-1-8:2005) [3], 
provide certain simplified equations by considering the safety coefficients for the evaluation. Generally, both 
numerical simulation and experimental study are conducted to investigate the resistance mechanism of the 
bolted connections. Compared with the expensive cost of experimental studies, detailed numerical modeling 
such as FEM is favorable. However, the main drawback of the FEM techniques is their high computation costs.  

As an alternative to FE models, some authors [4-6] began to use artificial intelligence (AI) and machine 
learning (ML) techniques such as artificial neural networks (ANNs), which use results from experimental tests 
for training purposes and obtain prediction models capable of providing reliable results almost in real time. AI 
and ML-based models can be either explicit or inexplicit. An inexplicit AI and ML-based model function is a 
“black-box”, which usually involves many flexible mathematical functions containing a number of parameters 
to fit data. Prediction accuracy is the main goal for such “black-box” models, and the interpretation of the 
models is secondary. Although such “back-box” models are widely applied, they are not the best choice if our 
goal is to purse the understanding of underlying mechanisms. Data to knowledge necessitates models with 
simple, explicit mathematical expressions. Symbolic regression is one of the most popular AI and ML methods 
to obtain explicit models from data for (exactly or approximately) describing target phenomena or mechanisms, 
and thus can be widely used by materials scientists and engineers to gain knowledge from data.  

Symbolic regression, namely symbolic function identification, is a function discovery approach for 
analysis and modeling of numeric multivariate datasets. Unlike traditional linear and nonlinear regression 
methods that fit parameters to an equation of a given form, symbolic regression tries to form mathematical 
equations by searching the parameters and the form of equations [7,8]. In other words, symbolic regression 
method searches nonlinear equation forms and its parameters simultaneously for an addressed modeling 
problem. It attempts to derive a mathematical function to describe the relationship between dependent and 
independent variables [8,9].  

The present paper proposes the use of symbolic regression (SR), based on genetic programming (GP) 
from evolutionary algorithms, to describe the maximum strength of a bolted connection under pure axial load. 
As a pre-study of the physical relationship between parameters using experimental data and finite element 
model data in the future study, the data prepared using the evaluations of the AISC code (AISC 360-16) [1] is 
used to verify the feasibility of the SR procedure. Here, the effects of the size of the training data and the 
selection of algorithm on the training results are discussed. The paper provides a guide to rediscover the explicit 
models for various types of bolted connections.   

2. Problem Description 
The case study presented involves a bolted connection subject to shear, as shown in Fig. 1. In this paper, to 
simplify the calculation case, the single bolt connection with two shear planes was considered. ASTM A529 
steel plate (fy = 345MPa, fu = 500 MPa) and F3043 bolts (fnv,bolt = 620MPa) were considered for the connected 
plates and bolts.  
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Fig. 1 – Bolted connection subjected to shear load 

Three basic limit states govern the response of bolts in bolted connections: shear through the shank or 
threads of the bolt, bearing on the elements being connected, and tension in the bolt. The most common 
application of bolts in connections is to resist shear. Shear through the shank of the bolt is the means whereby 
the load is transferred from one plate to the other. Fig. 2 lists the basic failure modes observed for the bolted 
connection subjected to shear load.  

According to the AISC provision (AISC 360-16) [1], the evaluations of these failure modes are listed as 
follows. 

For the limit state of bolt shear, the nominal strength is based on the tensile strength of the bolt and the 
bolt size.  

 Rbolt = Abfnv,b (1) 
where, fnv,b =0.563fu,b is the nominal shear stress of bolt in bearing-type connections, Ab is the area of the bolt 
shank, fu,b is the nominal tensile stress of bolt. 

If the bolt shank is stronger than the connected plate, the failure will be concentrated in the plate. 
Therefore, the failure mode of the connected plate should be considered in the design, too. 

The net section failure of the connected plate could be the net section fracture or gross section yield, as 
described by Eq. (2). 

 Rnet = fu(W-d-2)t (2) 

 Rgr = fyWt (3) 
where, Ag is the gross section of the connected plate, An is the net section of the connected plate, fu is the tensile 
strength of the connected plate, and fy is the yield stress of the connected plate. 

The Specification provision considers two limit states for bearing strength at bolt holes: the limit state 
based on shear in the material being connected, as shown in Fig. 2(c), and the limit state of material crushing, 
as shown in Fig. 2(d).  

When the clear distance from the edge of the hole to the edge of the part or next hole is less than twice 
the hole diameter, the limit state of shear in the plate material, also referred to as tearout, will control. In this 
case, failure occurs by a piece of material tearing out of the end of the connection as shown in Fig. 2(c). The 
resistance strength of this mode is as follows: 

 Rtearout = 0.6fu(2lc)t = 1.2lctfu (4) 

t

W

Lcd0=d+2

P
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where 0.6fu is the ultimate shear strength of the connected plate, t is the thickness of the connected plate, lc is 
the clear distance from the edge of the hole to the edge of the connected plate.  

If the clear distance exceeds 2d, bearing on the connected material will be controlling limit states, as 
shown in Fig. 2(d). In this case, the limit state is that of hole distortion and the calculated bolt strength will be  

 Rbearing = 2.4dtfu (5) 
where, d is the nominal bolt diameter, t is the connected plate thickness, fu is the tensile strength of the 
connected plate.  

     

a) shear failure of bolt b) net section 
failure 

c) full section 
failure 

d) tearout 
failure 

e) bearing 
failure 

Fig. 2 – Failure modes of bolted connection  

3. Symbolic Regression  
Symbolic regression, an evolutionary function discovery method based on genetic programming, was first 
proposed by John Koza in 1992 [10]. It is able to extract freeform equations that correlated with data from a 
given experimental dataset. Different from traditional regression methods, symbolic regression is able to 
determine both parameters and structures of the regression models simultaneously [11]. In traditional 
numerical regression, the functional form is pre-defined to be linear, polynomial, or nonlinear, and the task is 
to determine the coefficients in the functional form. In symbolic regression, the task is to automatically find a 
suitable functional form in the complex data, either linear or nonlinear, and simultaneously determine the 
coefficients of the functions. Schmidt and Lipson [12] distilled freeform natural laws from experimental data 
without any prior knowledge about physics, kinematics, or geometry.  

The fundamental idea of symbolic regression is rooted in Darwin's evolution theory, where the 
competitive mechanism ensures that the promising individuals will have more chances to survive and the 
individuals with poor performance will be gradually removed. There are three genetic operators commonly 
adopted to implement the mechanism, including selection, crossover, and mutation, as shown in Fig. 3. Based 
on the genetic operators, once a superior gene appears in some individuals, it will be selected, duplicated and 
spread across the population of individuals. Whether a gene remains in an individual during the competitive 
evolutionary process is determined by its contribution to the fitness of the model. In other words, only the 
important genes will be selected to form the models gradually, just like the survival mechanism in Darwin's 
theory of evolution. The emergence of a superior gene could help us to identify which factor contributes 
significantly to the functions found by the symbolic regression. That is, the occurrence of each factor shows 
its ability to describe the data, and higher frequency indicates more importance.  
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Fig. 3 – (a) Crossover, (b) mutation genetic operations in the symbolic regression 

The original idea for symbolic regression was presented in [10], and it was subsequently popularized by 
the commercial tool Eureqa software [13]. In this program, candidate solutions are encoded as trees, with 
terminal nodes corresponding to constants and variables of the problem, while intermediate nodes encode 
mathematical functions such as {+, -, *, /, …}. All the nodes are collectively termed building blocks and are 
user-defined. The fitness function is usually proportional to the absolute or squared error between experimental 
data and values predicted by a candidate solution, with parsimony corrections to favor more compact equations.  

The advantage of symbolic regression is that it could discover models automatically, and at the same 
time, such advantage will meet a huge searching space of potential solutions and a huge computing resource. 
Additional advantage of SR technique is the delivery of human-readable models. While ANN and SVM models 
are usually hard to make sense of, information can always be extracted from equations, even when they are 
extremely complex: a human expert could use automatically generated results to infer properties of the target 
phenomenon, and eventually use them as a base to build a better model. 

4. Preparation of Dataset 
Comparing with the dimension variations of bolted connections, the variations of the steel plate and bolt 
properties could be neglected. Therefore, the steel grade and bolt grade are considered as a constant value. The 
input parameters of the regression include the nominal diameter of bolt d, and width W, clear edge distance lc, 
and thickness of connected plate t. The target parameter is the ultimate resistance of the bolted connection FR. 
Here, the selection of these parameters is explained. 
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According to the AISC Specification (A360-16) [1], the common sizes of bolts are M16, M20, M22, 
M24, M27, M30. The plate thickness t varies from 6 mm to 16 mm, by considering the common application 
of plate thickness. The minimum and maximum edge distance from the center of a standard hole to an edge of 
a connected part in any direction are also given in the Specification (AISC 360-16) [1]. The maximum distance 
from the center of any bolt to the nearest edge of the connected part shall be 12 times the thickness of the 
connected part under consideration, but shall not exceed 150 mm. Take M16 bolt as an example, the diameter 
of bolt is 16 mm. The variation range of the edge distance is then 22 mm to 150 mm. Then the clear edge 
distance lc varies from 13 mm to 141 mm, by considering the bolt hole size is 2mm larger than the bolt size.  
The variation range of the width of the connected plate is 44 mm to 300 mm.  

The selected parameters and the range of the parameters are listed in Table 1. The value of parameters 
related to the connected plate is continuous with the incremental of 1mm. The value of bolt diameter is discrete, 
with the total five numbers of 16, 20, 22, 24, 27, 30. 

As explained in previous, the minimum value of the Eq. (1)-(5) determine the ultimate resistance of the 
bolted connection, as shown in Fig. 1. 

 FR = min{Rbolt, Rnet, Rgr, Rtearout, Rbearing} (6) 
The calculated ultimate resistance of the bolted connection used for the training is calculated using the 

aforementioned value, which are listed in Table 1.   

Table 1 – Input and target parameters for SR 

Parameter  
Input Parameter Target parameter 

d  t lc W FR 
 

Unit  mm mm mm mm kN 

Varying range 16~30 6~16 13~141 44~300 51~634 

 
This dataset consists of four characteristic input variables (d, t, lc, W) and a target variable (FR). It should 

be noted that in order to minimize the likelihood of numerical instabilities and/or low convergence rates, the 
values of the input and target parameters have been normalized in the range [0,1].  In order to ensure the design 
equations (Eq. (1)-(5)) of the five failure modes fairly treated in the training, the proportion of data size for 
each design equation should be the same. There 1000 data were selected from each design equation dataset. 
Therefore, there 5000 data, in which 3500 data were used for training and 1500 data were used for testing, 
were adopted for the following symbolic regression.  

5. Training and Evaluation of SR models 

5.1 Training of SR models 
For symbolic regression, all candidate solutions are represented by regular functions, whose structure is 
determined from “building blocks” defined by sets of input variables, constants and function symbols. For the 
present regression, it is considered as function symbol set containing addition, subtraction, multiplication, 
division, power, minimum, constant, integer constant and input variable operations (“+”, “-”, “*”, “/”, “^”, 
“min”, “c”, “n” and “x” respectively).  

 The fitness function that associates a numerical fitness value to each candidate solution and defines the 
problem to be solved by the genetic programming is the mean absolute error (MAE) of the normalized ultimate 
strength approximation against the normalized calculated ultimate strength using Eq. (6). This function is 
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described by averaging the absolute difference of the n-observations for the i-model during the evaluation as 
shown by the Eq. (7).  

MAE= 1
n
∑ "𝐹′R,cal[𝑖]-𝐹′R, SR[𝑖]"n

i=1   (7) 
where n is the total number of evaluated models before the evolution. 

The generation of function’s candidates was constructed by implementing the Monte Carlo’s method. 
Random expressions from given operations and variables/constants were generated, and the fitness function 
was also evaluated through Eureqa software [13]. The best models (with the minimum fitness value) in each 
tournament were allocated in a new data-frame dismissing the remaining models. Then, the new data-frame 
was populated again evolving the best models by reproduction, mutation or crossover operations. Considering 
the function’s complexity, the number of necessary operations in the candidates is limited filtering the 
candidates by i) the fitness once MAE<5%, and ii) the number of operations. With this, there is not only a 
better solution but a family of possible solutions from which it is selected the one that best fits the simulation 
responses. 

When starting a symbolic regression run, the first generation is unaware that there is any target function 
that needs to be optimized. The initial programs encompass a totally random mix of the available functions 
and variables, generated from the initial population, where a random maximum depth is chosen for each 
individual, and the program is grown. Consequently, by generating a population of programs, the decision 
regarding the selection of the programs allowed to evolve into the next generation was carried out through 
tournaments where the fittest individuals in the tournament subsets are selected to move on to the next 
generation after genetic operations are performed on them. 

5.2 Results of Symbolic regression 
The best solution was sought considering the complexity (number of parameters and operation quantity) of the 
obtained expression. In addition, the dimensional consistency of physical quantities must be maintained in SR 
for constructing meaningful equations.  

There selected candidates Eq. (8)-(10) with the validation errors listed in Table 2. It is noted that the all 
these three equations give quite low errors with the target parameters. It is most due to the clean of the prepared 
data. As it may be noted that although three equations could predict the ultimate strength accurately, the three 
equations exhibited different expression. Considering the failure modes as described in the previous part, it 
could conclude that Eq. (8) represents the physical meaning in a reasonable way.  

Table 2 – Validation errors for each candidate 

Name R^2 ME MAE Complexity CPU-Time 

FSR (1) 1.000000 0.036 0.002 31 2h 30m 16s 

FSR (2) 0.999999 0.165 0.010 33 11h 54m 6s 

FSR (3) 1.000000 0.045 0.001 38 2h 30m 22s 

FSR’ = min (1.46*d'2, 1.09*t'*d', 1.09*t'*lc', 1.77*t'*W', t'*(3.00*W'-0.26)) (8) 

FSR’ = 2.98*min (0.50*d'2, 0.36*t'*d', 0.36*t'*lc', 0.59*t'*W', 1.00*t'*(W'-0.09))  (9) 

 FSR’ = min (1.46*d'2, 1.08*t'*d', 1.08*t'*lc', 1.76*t'*W', t'*(3.19*W'-0.29), t'*(3.00*W'-0.27)) (10) 
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Since the material properties of the connected plate and bolt are considered as the constant value, and 
both the input and target parameters are normalized, the design and predicted equations are expressed in a 
readable way in Table 3. It is noted that only the equation for net section fracture failure mode is not well 
predicted. It is speculated that the variation range of the diameter is relatively limited comparing with the other 
parameters in the data set.  

Table 3 – Comparison between the predicted equations with the design equations  

Failure mode Design Equation Predicted Equation 

Bolt shear (Fig. 2(a)) *Rcal,bolt =0.487*2*d2 RSR,bolt = 0.502*2*d2 

Connected plate net section fracture  

(Fig. 2(b)) 
Rcal,net =1.00*t *(W-d-2) *fu RSR,net =1.00*t *(W-17.96) *fu 

Connected plate gross section yield  

(Fig. 2(c)) 
Rcal,gr =1.00*t *W*fy RSR,gr =1.01*t *W*fy 

Connected plate tearout (Fig. 2(d)) Rcal,tearout =1.20*t*lc*fu RSR,tearout =1.21*t*lc*fu 

Connected plate bearing (Fig. 2(e)) Rcal,bearing =2.40*d*t*fu RSR,bearing =2.42*d*t*fu 

*Note that in the equation for bolt shear failure mode. The value of 0.487 represents 
πfnv,b

4
×0.001, where fnv,b = 

620 MPa. 

 

5.3 SR-model’s verification with experimental results 
For verification of the selected predict equation based on symbolic regression, the values of testing data set 
were used. Fig. 4 shows that the symbolic regression model predictions tend to the calculated results using Eq. 
(6), with a mean absolute error MAE=0.002 and a maximum absolute error ME=0.036. It further proved the 
feasibility of the selected predict equation. 

 
Fig. 4 –  Comparsion between results from design equations and SR predict equations  
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6. Conclusion
Discovering knowledge from data is a development trend of modern science. In this era of exponential data 
growth, symbolic regression (SR) is playing a greater role in the discovery of knowledge from data. Unlike 
other machine learning “black-box” algorithms, SRs can discover mathematical formulas from data quickly 
and accurately. When combined with domain knowledge, the explicit interpretable formulas may be 
scientifically meaningful.  

Preliminary results show that the candidate formulas obtained are in good accordance with the formula 
in the design code and SR can be used as reliable algorithms for prediction of shear resistance of bearing-type 
bolted connections, pointing to a potential means for both the discovery of physical mechanism from 
experimental data, as well as the use of further developed model for artificial-intelligent-based rapid structural 
design. The selected four input parameters could fully describe the underlying design formula of the considered 
problem.  

In the present study, only the calculated results using design equations was considered.  In the future 
study, the data set composed of experimental data and finite element model data will be used for training, and 
it is expected to quantitatively study the relationship between different failure modes and their corresponding 
resistance and characteristic variables through symbolic regression. 
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