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Abstract 

Visible seismic damage of reinforced concrete (RC) structures, including crack, spalling and crushing of concrete, 
exposure and buckling of reinforcement, provides profound insights into understanding damage mechanism and 
evaluating damage states of RC structural components. Thus, the damage identification (i.e., detection, classification and 
quantification of various types of visible damage) plays an important role in the post-earthquake assessment of RC 
building structures. Current practice for post-earthquake damage identification relies on eye-inspection, which remains 
subjective and time-consuming. 

In this study, a novel approach for identification of visible damage of RC structures is proposed, based on computer vision 
theories and algorithms (e.g., semantic segmentation). First, a semantic segmentation database was constructed from test 
photos of RC structural specimens, including shear walls and joints. The generality and representativity of the database 
were examined. Second, based on the architectures of the well-known convolutional networks, i.e., VGG-16 and U-Net, 
a deep convolutional network for semantic segmentation of visible damage was designed, named as Damage-Net. Two 
sets of parameters for the proposed Damage-Net were optimized separately for the detection of cracks and other types of 
damage, named as Crack-Net and 4Cate-Net, respectively. The transfer learning technique was utilized in the training 
process of convolutional networks, enabling reduced computing resources and database size. Third, a post-processing 
approach for the outputs of Crack-Net, i.e., Threshold after Histogram Equalization, TaHE, was developed to improve 
the performance of crack identification. Comparison of crack characterization results suggested that, the proposed TaHE 
was capable of providing improved results for crack width quantification. In the end, the proposed vision-based approach 
was applied to a series of photos of a beam-to-wall joint specimen. It is indicated that damage metrics (e.g., crack width, 
spalling size, exposure of reinforcement) can be easily obtained from the segmentation results of visible damage.  

In summary, the proposed vision-based approach for RC structural damage identification achieves competitive results 
with respect to accuracy and generalization. The approach can provide fundamental support for further development of 
an autonomous, robust and efficient post-earthquake assessment program for RC building structures. 

Keywords: visible damage identification; computer-vision; semantic segmentation; convolutional neural networks; RC 
structures. 
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1. Introduction 

Post-earthquake safety assessment of building structures has played a critical role in emergency treatment and 
after-hazard restoration of urban communities. The current practice of safety assessment relies on field surveys 
carried out by certified structural engineers or professionals, which causes the procedure extensively time-
consuming. Moreover, the existing procedure for the safety assessment of building structures is severely 
subjective, since the evaluation results are primarily based on the professional knowledge and experience of 
different inspectors. 

Meanwhile, significant progress has been achieved in the fields of computer vision and machine learning 
in recent years. By taking advantage of the algorithms of these fields, there is a high potential for the 
development of an autonomous post-earthquake safety assessment system for building structures, which would 
improve current practice for both efficiency and accuracy. 

According to the guidelines for post-earthquake safety assessment in China [1], Japan [2, 3] and US [4], 
visible damage of RC structural components is closely related to the degradation of their mechanic properties, 
and is used as the essential information for the damage state estimation of RC components. For this reason, 
visible damage identification should be considered as a fundamental step in the overall safety assessment 
procedure for building structures. 

In this research, techniques from computer vison, e.g., semantic segmentation using convolutional 
networks, are leveraged to solve the puzzle of visible damage identification for RC structural components. The 
objectives of this research are (1) to localize, classify and segment typical damage of RC components, (2) to 
achieve accurate quantitative characterization of cracks, including crack width, angle and length. 

2. Fundamentals about convolutional networks 

First of all, to effectively organize the contents of this paper, and to facilitate the understanding, a brief 
introduction about convolutional networks is provided. A convolutional network can be considered as a special 
type of data-fitting function (or model). The mathematical formulation of a convolutional network is 
determined by its architecture, where the organization of series of basic operations, including 2D-convolution, 
ReLU and max-pooling, is defined. The convolutional network takes an image of size 𝐻 ൈ𝑊 as input, and for 
the task of segmentation, it outputs a matrix of size 𝐻 ൈ𝑊 ൈ 𝐾, which consists of the predictions for the  
𝐻 ൈ𝑊 pixels. The prediction for each pixel, which is a 𝐾-dimensional vector, i.e., 𝒑௜௝ ൌ ൣ𝑝ଵ,௜௝ ,𝑝ଶ,௜௝ , … ,𝑝௄,௜௝൧, 
is interpreted as a discrete probabilistic distribution, where 𝑝௞,௜௝ represents the predicted probability that the 
pixel at coordinate (𝑖, 𝑗) is an instance of category 𝑘. 

Data with annotated ground truth, referred to as a dataset, is required to assign reasonable values for the 
parameters of the model. The subset of the dataset that is used for the optimization (i.e., the training) of the 
parameters is called the training set, and the rest, which is used to validate the performance of the trained 
model, is called the test set. The training process of the model is to solve an optimization problem by the 
stochastic gradient descent (SGD) algorithm [5, 6] or one of its variants, such as Adam [7] and RMSProp [8]. 
For a model applied for semantic segmentation, the objective function at iteration 𝑡 (i.e., the loss of the model) 
is demonstrated in Eq. (1). 

 𝐿௧ ൌ
1
𝑁
෍ 𝑙ሺ𝒑௦

ሺ௧ሻ, 𝑐௦ሻ

ேିଵ

௦ୀ଴

 (1)

In Eq. (1), 𝑁 denotes the number of pixels in the training set, and 𝑠 is an iterator among the pixels. The 
term 𝑙ሺ𝒑௦, 𝑐௦ሻ is referred to as the loss function, which evaluates the error between the prediction at iteration 𝑡 
and the ground truth category of the 𝑠 th pixel. For the SGD and its variants, the objective function is 
approximated by the samples in a small subset of the training set (i.e., a batch) at each iteration, as denoted in 
Eq. (2), where 𝑁ୠ denotes the number of pixels in a batch. A batch of samples is randomly selected from the 
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training set at each iteration, and the number of samples in a batch (i.e., the batch size) is pre-assigned hyper-
parameter of the training. A small batch size can lead to a noisy approximation of the objective function and 
the corresponding gradient, which further causes the training slow-convergence or even divergence. 

 𝐿෨௧ ൌ
1
𝑁ୠ

෍ 𝑙ሺ𝒑௦
ሺ௧ሻ, 𝑐௦ሻ

ேౘିଵ

௦ୀ଴

 (2)

3. Database for visible damage of RC components 

Data is playing a fundamental role in the achievements of deep learning. In this research, a semantic 
segmentation database that has wide diversity in terms of appearances, scales, viewpoints, background clutter 
and occlusions, is collected and constructed for visible damage of RC components.  

3.1 Database construction 

The construction of database is divided into three key steps: (1) Selection of target categories; (2) Sample 
collection for the representation of selected categories; (3) Manual annotation of collected images. Special 
issues and considerations for each step are discussed as follows. 

For the selection of target categories, types of damage that are thought to be, with general agreement, 
most typical and effective for the estimation of damage state are focused on, since the purpose of visible 
damage identification is to provide reliable evidence for the damage state estimation of RC components. As a 
result, the set of target categories includes the surface Crack, Spalling and Crushing of the concrete, 
Exposure and Buckling of the reinforcement. 

Image Samples are selected from high-resolution test photos of a broad range of RC test specimens 
including RC shear walls and beam-to-wall joints. Diversity of the collected samples is ensured and promoted 
through the following ways. First, the selected specimens were of different section shapes, shear-to-span ratios, 
reinforcement configurations and expected failure modes. Second, various cameras with different 
configurations were used in the tests, and thus diversity is enlarged in terms of scales and viewpoints. Third, 
sample selection is conducted so that various background clutter and occlusions would be included into the 
database. Several samples are demonstrated in Fig. 1 to visualize the diversity of the constructed database from 
multiple perspectives. 

      
(a) Textures of concrete surface (b) Lighting conditions 

      

(c) Scales (d) Viewpoints 

      
(e) Background clutter and occlusions 

 Fig. 1 - Diversity of the constructed database. 
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For the annotation of the image samples, a guideline is summarized based on the observation of visible 
damage and the understanding of the damage mechanisms of RC structural components, in order to ensure the 
accuracy and consistency of the manual annotation. Manual annotation of the collected samples is carried out 
following the guideline. Strict and detailed check on the annotated results is performed by graduates majored 
in civil engineering. During the process of annotation and check, ambiguous cases are discussed and confirmed 
with professors and experienced engineers. Accuracy is emphasized in the entire workflow of annotation, 
through which the high quality of the constructed database is guaranteed. 

3.2 From database to datasets 

Image samples in the constructed database are of arbitrary sizes, i.e., the heights and widths of the images are 
different from each other. Rather than feeding the samples from the database directly to the convolutional 
networks, two aspects suggest the usage of samples with uniform size. First, the training of convolutional 
networks for semantic segmentation is highly memory expensive. By reducing the sample size to a relatively 
small and uniform size, a larger batch size can be configured, and thus, a faster and better convergence of the 
training model can be achieved. Second, the number of image samples contained in the constructed database 
is limited, meanwhile, the sample size of each image is rather large. Effective data-balancing, which is a crucial 
factor in the training of the convolutional networks, is therefore restrained. Issues of data imbalance and 
strategies for data-balancing will be discussed in detail later in this subsection. 

To overcome the aforementioned issues, datasets are constructed from the database. In the context of 
this research, the term “database” is used to denote a set of image samples which occupy arbitrary sample 
sizes, and the term “dataset” is used to denote a set of image samples with a standard and uniform size (i.e., 
300 pixelൈ300 pixel in this research). Sample candidates for the datasets are generated following the procedure 
demonstrated in Fig. 2, where techniques for data augmentation is introduced in the procedure to exploit data 
diversity. By randomly selection of center point, rotation angle, scaling factor and flipping axis, the diversity 
of the datasets is enriched in terms of certain affine transformations, including translation, rotation, scaling and 
reflection. 

Fig. 2 - A flowchart for the generation of the sample candidates. 

Data imbalance is an intrinsic issue for the collected database. At the sample level, the number of image 
samples which contain concrete crushing and reinforcement buckling areas is limited, since severe damage 
occurs at the final stage of the loading procedure. Moreover, the characteristics of damage categories in spatial 
distribution lead to severe data imbalance at the pixel level. In addition to the fact that the pixels of background 
are dominant in the database, the pixels of concrete damage (i.e., spalling and crushing) tend to occupy an 
area, while the pixels of reinforcement damage (i.e., exposure and buckling) are only scattered in this area. 
Especially, the crack category requires additional attention, as it occupies a proportion of pixels of merely 3% 
in the database. 

Data imbalance can extensively affect the training process. If the convolutional networks are trained 
using the data which suffers from severe data imbalance, the resulting model would show drastically distinct 

9c-0017 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0017 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

5 

recognition for different target categories. Several data-balancing strategies are applied to the generation of 
the datasets, which are able to mitigate the impact of data imbalance at various aspects and levels. 

(1) Individual dataset for crack detection, the Crack-DS

Compared with other four categories, the pixel-level proportion of cracks is almost negligible, and the
visual characteristics of crack category appear to be extremely local and detailed. An individual dataset, named 
as the Crack-DS, is therefore generated for crack detection. The dataset that is used for the detection of the 
other four categories is referred to as the 4Cate-DS. 

(2) Sample-level data-balancing

Data imbalance at the sample level is mitigated by conducting category-existence examination on
sample candidates before including them into the datasets. For the crack category, a sample candidate is 
accepted as a sample of the Crack-DS only if cracks are contained in this candidate.  

For the other four categories, samples are firstly generated into two separate groups, denoted as SpEx-
Group (Spalling/Exposure Group) and CrBk-Group (Crushing/Buckling Group), respectively. As there are 
more images containing spalling and exposure category in the original database, in order to ensure the number 
of samples in the two groups are comparable with each other, a lower sampling rate is assigned for the 
generation of the SpEx-Group. The 4Cate-DS is eventually constructed as the combination of the SpEx-Group 
and the CrBk-Group. 

For both the Crack-DS and the 4Cate-DS, 85% samples are randomly picked to compose the training 
set, and the rest of the samples compose the test set. Statistical information of the resulted datasets is listed in 
Table 1. 

Table 1 - Statistical information of the datasets. 

Dataset Category 
Number of samples 
(Training / Test set) 

Proportion of pixels 
(Training set) 

4Cate-DS 

Background 1046 / 184 55.70% 
Spalling 740 / 128 17.54%
Exposure 559 / 98 2.12%
Crushing 531 / 90 20.69%
Buckling 471 / 85 3.95%

Total 1046 / 184 - 

Crack-DS 
Background 

2018 / 356 
98.22% 

Crack 1.78%

(3) Pixel-level data-balancing

The strategy proposed by Eigen and Fergus [9] is applied to resolve the pixel-level data imbalance,
where the weighting coefficients are introduced to the objective function. The weighted objective function is 
formulated in Eq. (3). The weighting coefficient for each category is calculated as in Eq. (4),  

𝐿෨௧ ൌ
1
𝑁ୠ

෍ 𝑤௖ೞ ⋅ 𝑙ሺ𝒑௦
ሺ௧ሻ, 𝑐௦ሻ

ேౘିଵ

௦ୀ଴

(3)

𝑤௞ ൌ
1
𝐾
⋅
𝑁
𝑁௞

(4)

where 𝐾 denotes the number of categories, 𝑁 is the number of pixels in the training set, and 𝑁௞ is the number 
of pixels of category 𝑘 (in the training set). Compared with the original objective function, the weighted 
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objective function emphasizes the importance of the small-portion categories, and thus guides the trained 
model into comparable recognition among the target categories. 

4. Damage identification model 

4.1 Damage-Net 

In general, the architecture of convolutional networks used for semantic segmentation is composed of the 
encoder, the decoder and a series of skip connections, as in Fig. 3 illustrated. The encoder functions exactly as 
the convolutional layers in the models for classification, and its structure is often inherited from classification 
convolutional networks. In the task of segmentation, the encoder is responsible for coarsely predicting the 
categories of each region in the input image. The size of the prediction obtained from the encoder is enlarged 
by the decoder to the size of the input. During the zooming process, multiscale local information is supplied 
through skip connections to assist the reconstruction of a finer prediction with respect to the local boundaries 
between areas of different categories. 

Fig. 3 - The general architecture of convolutional networks for semantic segmentation. 

Among various state-of-art models for segmentation, such as FCN [10], U-Net [11], DeepLab [12] and 
SegNet [13], the major differences lie in the design of the decoders and skip connections. The architectures of 
these models are examined and compared during the pre-test, where it is noticed that the U-Net suits the 
purpose of visible damage detection best, since it provides a direct and intact way for local information 
integration.  

An architecture of a deep convolutional network, named as Damage-Net, is designed specifically for 
visible damage detection of RC components. The architecture is based on U-Net, while adaptive improvements 
are carried out in terms of flexibility and training efficiency.  

First, the output prediction in U-Net is not of the same size as the input image, which makes the data 
pre- and post-processing a bit cumbersome. In the proposed Damage-Net, layer configurations, such as padding 
size and stride size, are precisely decided, in order to ensure that the input and the output are of the same size. 
Second, the encoder of U-Net is not inherited from any known architecture of classification models, therefore 
the parameters need to be optimized from scratch. Training from scratch requires more training data, and may 
be confronted with issues like over-fitting and slow-convergence. Damage-Net, by contrast, learned from the 
design of FCN, SegNet and DeepLab, inherits its encoder from the convolutional layers of VGG-16 [14], a 
deep convolutional network which achieved excellent accuracy on the large-scale, general-purpose dataset 
ImageNet [15]. The adaptation from VGG-16 enables Damage-Net to conduct transfer learning [16, 17], which 
leads the training on relatively small-scale datasets to a better convergence with less computing resources. 

The architecture of Damage-Net is illustrated in Fig. 4. Four skip connections are introduced to 
effectively integrate multiscale local information for delicate boundary construction. Damage-Net has 28.8 
million parameters in total, and 14.7 million are deducted if the parameters are transferred from VGG-16. 
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Fig. 4 - The architecture of the proposed Damage-Net. 

4.2 Training and performance evaluation of Damage-Net 

As mentioned in Section 2, crack category is separated from the other four categories to form its individual 
dataset Crack-DS. Therefore, two types of models, denoted as 4Cate-Net and Crack-Net separately, are 
optimized correspondingly.  

Models with different training configurations are compared to demonstrate the superiority of the 
proposed architecture Damage-Net. The models will be evaluated on aspects of resource consumption (i.e., 
computing time and memory usage) and recognition performance. The performance of a model is reported on 
the test set using standard and well-known metrics including pixel accuracy (PA), per-category pixel accuracy 
(perPA), mean pixel accuracy (MPA), per-category intersection over union (perIoU), mean intersection over 
union (MIoU) and frequency-weighted intersection over union (FWIoU). The detailed formulation and 
explanation of these metrics can be found in the reference [18]. Among them, the MIoU is considered as the 
main indicator for accuracy evaluation in this research, since it is the most used and accepted metric due to its 
representativeness and simplicity. 

Transfer learning is a practical technique for training convolutional networks on relatively small-scale 
datasets with limited computing resources. In brief, transfer learning is the application of certain parameters 
from a pretrained model into the target model, where part of the architecture is shared between the two models. 
The reason for parameter “transferring” among models is that the recognition of visual features such as basic 
geometric shapes and simple textures may form the cornerstone of any visual systems, although the target 
domains of the systems vary significantly. Most commonly, the pretrained model is one that trained on large-
scale datasets (e.g., OpenImage [19], ImageNet [15]), and thus is considered to preserve broad generalization 
and possess excellent recognition of basic visual features.  

Two strategies of transfer learning can be deployed while training a convolutional network. The first 
one is referred to as the fine-tuning strategy [17], where parameters transferred from the pretrained model are 
updated iteratively using a relatively small learning rate. The second one is called the feature-extractor strategy 
[16], where transferred parameters are fixed (i.e., frozen), and only the newly configured and randomly 
initialized parameters of the target model are optimized during the training. 

In order to show how the training process is benefited from the architecture of Damage-Net, numerical 
tests are carried out to analyze the differences in performance, computing time and memory usage among the 
networks that trained without transfer learning (i.e., from scratch) and with two different transfer learning 
strategies. The models are trained under the same configuration using the RMSProp algorithm, while the only 
difference is how the parameters are initialized and updated. As for the from-scratch model, all the parameters 
are randomly initialized and iteratively optimized during training. For the two transfer-learning models, 
transferred parameters are initialized from the corresponding VGG-16 layers, while the rest are randomly 
initialized. During the training, transferred parameters in the fine-tuning model are updated with a smaller 
learning rate (i.e., 1% of the base learning rate), and the ones in the feature-extractor model are fixed. 

Performance comparison among the three models are shown in Fig. 5. Training from scratch is less 
effective than applying transfer learning concerning the accuracy of the resulted models. Between the two 
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strategies, the corresponding models have shown considerably similar detection accuracy, while the feature-
extractor strategy is more computationally economic, since it cut down the training time by about 30% and 
spare the memory usage by about 25%, as demonstrated in Table 2. 

(a) The loss of 4Cate-Net (b) The loss of Crack-Net

(c) MIoU of 4Cate-Net (d) MIoU of Crack-Net
Fig. 5 - Performance comparison of models trained from scratch, with fine-tuning strategy and with feature-

extractor strategy. 

Table 2 - Computing resources required by models trained from scratch, with fine-tuning strategy and with 
feature-extractor strategy. 

Network Strategy 
Computing time per 

iteration / ms 
(mean േ 1 ⋅ 𝜎) 

Memory usage 
per sample / MB 

4Cate-Net 
From scratch 1647േ56 820 
Fine-tuning 1760േ81 820 

Feature-extractor 1227േ35 626 

Crack-Net 
From scratch 1600േ47 813 
Fine-tuning 1707േ77 813 

Feature-extractor 1220േ38 619 

Eventually, a few models are trained using the Adam and RMSProp algorithms separately, and models 
with the highest MIoU are selected as the ultimate sets of parameters for 4Cate-Net and Crack-Net, which will 
be used for subsequent analysis in this article. Metrics of the ultimate models on the test set are reported in 
Table 3.  

Table 3 - Performance of the ultimate models. 

Network Category PA /% perPA /% FWIoU /% perIoU /% 

4Cate-Net 

Background 

92.42 

95.58 

86.21 

91.92 
Spalling 88.10 79.30
Exposure 76.04 60.77
Crushing 91.24 82.69
Buckling 84.06 71.89
Average MPA /% 87.00 MIoU /% 77.31 

Crack-Net 
Background 

97.98 
98.42 

96.85 
97.95 

Crack 76.84 43.35
Average MPA /% 87.63 MIoU /% 70.65 
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Several samples from the test set are demonstrated in Fig. 6 and Fig. 7 to visualize the performance of 
the 4Cate-Net and Crack-Net, respectively.  

     
(a) Image samples 

 

     
(b) Annotation 

     
(c) Output of 4Cate-Net 

Fig. 6 - Performance visualization of 4Cate-Net. 

     
(a) Image samples 

     
(b) Annotation 

     
(c) Output of Crack-Net 

Fig. 7 - Performance visualization of Crack-Net. 

4.3 Post-processing 

Although the Crack-Net is remarkable for accurately detecting cracks in the sense of localizing the cracks and 
tracking the paths of the cracks, it has been noticed that the convolutional network has difficulty in precisely 
delineating the boundaries of cracks. Instead, the model tends to extract a crack together with borders 
surrounding it, and thus causes the overestimation of crack width. A post-processing technique is proposed in 
this study to cope with this defect, as in Fig. 8(a) illustrated.  

9c-0017 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0017 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

10 

 

(a) Flowchart of the proposed Threshold 
after Histogram Equalization 

(b) Comparison of crack width 
analyzed from Annotation, 

Crack-Net and TaHE 
Fig. 8 - The proposed post-processing technique, TaHE, and its performance. 

The basic idea is to use the output of Crack-Net as a mask for crack detection, and the boundaries of 
cracks can further be determined through the contrast of intensities between crack-pixels and background-
pixels. Specifically, the original image and the output of Crack-Net is overlapped to get the masked image (see 
Image II in Fig. 8(a)), and then the Histogram Equalization with Mask algorithm [20] is conducted to improve 
the global contrast of the masked image. As follows, the Otsu’s thresholding [21] is applied to the equalized 
masked image (see Image III in Fig. 8(a)), which leads to the detected cracks with refined boundaries. The 
proposed technique is named as Threshold after Histogram Equalization (TaHE) according to the procedure 
of the technique.  

As shown in Fig. 8(b), cracks depicted in the images of (manual) annotation, (the output of) Crack-Net 
and (the result of) TaHE are characterized using algorithms proposed in the study [22] to validate the 
performance of the proposed TaHE. The quantitative results of crack width obtained from the annotation and 
TaHE are close to each other, while the output of the Crack-Net overestimates the crack width by a significant 
margin. The analysis results suggest the effectiveness of the proposed TaHE. 

5. Application on structural specimen photos 

The proposed vision-based damage identification models are applied to a series of test photos of a beam-to-
wall joint specimen (see Fig. 9(a)). Perspective transformation [23] is utilized as pre-processing to correct the  
lens distortion of the original photos, and the conversion factor between pixel-unit and engineering-unit is 
further derived from the corrected photos.  

The photos are then analyzed by the 4Cate-Net, Crack-Net and the corresponding post-processing 
technique TaHE, and the results are visualized in Fig. 9(b). The size of the spalling region is directly calculated 
by accumulating spalling pixels detected in each test photo, and the development of spalling area along the 
loading process are plotted in Fig. 9(c).  
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(a) Pre-processed test photos 

 

   
(b) Damage detection results 

 

 
(c) Spalling area 

(d) Crack length (mm) 

(e) Crack width (mm) 
 

Fig. 9 - Application to test photos of a RC joint. 

Crack fields identified by Crack-Net and TaHE are further separated, labeled and characterized by the 
crack characterization algorithm [22], through which, essential geometric properties (i.e., crack length, crack 
width and crack angle) of each crack are calculated. Statistical distributions of crack length and crack width of 
the crack field in each loading level are computed and compared in Fig. 9(d) and (e), respectively. It can be 
observed that the cracks gradually grow longer and wider along the loading levels, which reflects the 
degradation of the specimen. 

6. Conclusions 

In this research, a novel vision-based approach is developed for damage identification of RC structural 
components. Deep learning techniques are deployed in this approach, which enables pixel-level detection for 
visible damage, including crack, spalling and crushing of concrete, exposure and buckling of reinforcement. 
The proposed approach is applied to a series of test photos of a beam-to-wall joint specimen, through which, 
the accuracy and effectiveness are validated. 

To achieve semantic segmentation using deep learning techniques, a diverse database is constructed for 
visible damage of RC structural components. Datasets are further generated where issues of data imbalance 
are dealt with and data diversity is enriched in terms of certain affine transformations. 

Based on VGG-16 and U-Net, a deep convolutional network architecture, the Damage-Net, is proposed, 
which enables effective training with small-scale dataset. Two models, the 4Cate-Net and Crack-Net, are 
optimized separately for the detection of crack and other damage. Both models achieve excellent performance 
with PA above 90% (92.4% for 4Cate-Net, 98.0% for Crack-Net) and MIoU above 70% (77.3% for 4Cate-
Net, 70.7% for Crack-Net). Moreover, a simple but effective post-processing technique is proposed for Crack-
Net, through which crack width is well-preserved and accurate geometric properties can be further estimated. 
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