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Abstract 

Post-earthquake use of buildings is required at hospital facilities that responds to disaster medical care and in measures 

for stranded persons, and so on. In the Great East Japan Earthquake, stranded persons were a major issue, and the building 

is required to promptly confirm the safety of the facility after the earthquake in order to accept stranded persons, and the 

need for structural health monitoring system is increasing in recent years. Many of these systems install accelerometers 

on each floor or every few floors in the building, estimate the building deformation by acceleration integration or mode 

analysis, and estimate the damage of each floor from story drift angle. 

The authors speculated that the degree of building damage could be estimated directly by training with machine learning 

in advance the relationship between the acceleration data measured by accelerometers installed in the building and the 

degree of building damage. However, in order to create a learning model, a huge amount of training data including the 

results of damage is necessary, and observation records alone are insufficient. Therefore, we considered to create a 

learning model by conducting earthquake response analysis many times and using the analysis results and observation 

records as training data. 

In this study, as the first step, we created a learning model using only the analysis results. Since the target building is 

preferably that with the observation records, to create training data, 3D model for seismic response analysis was created 

referring to the specimen used in the previous full-scale shake table experiment conducted in E-Defense for a steel 18-

story building, and seismic response analysis with multiple seismic waves have been conducted. 

Machine learning model is trained using the Fourier amplitude spectrum of each floor response acceleration obtained 

from the analysis results as input data, and the damage level of each floor as output data.  The damage level of each floor 

is categorized into 3 levels based on the rate of structural member hinge occurrence. 

As a result of machine learning with neural networks and Random Forest, it was found that the damage level of each floor 

can be estimated with accuracy of more than 80%. However, the estimated accuracy of the damage pattern that was 

infrequent in the training data was low. When the feature importance was evaluated with Random Forest, the importance 

of the Fourier amplitude spectrum corresponding to the position where the seismic response is not amplified tended to be 

high. 
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1. Introduction 

Post-earthquake use of buildings is required at hospital facilities that responds to disaster medical care and in 

measures for stranded persons, and so on. In the Great East Japan Earthquake, stranded persons were a major 

issue, and the building is required to promptly confirm the safety of the facility after the earthquake in order 

to accept stranded persons. Thus, in 2013, Ordinance for Measures Concerning Stranded Persons was enacted 

by the Tokyo Metropolitan government. According to the final report by the Council for Measures on Stranded 

People Concerning the Capital Region Earthquake [1], it is required to judge within three hours of whether or 

not to stay in the building, and the need for structural health monitoring system is increasing in recent years. 

Many of these systems install accelerometers on each floor or every few floors in the building, estimate the 

building deformation by acceleration integration or mode analysis, and estimate the damage of each story from 

story drift angle. These types are also being introduced into real buildings as systems with some degree of 

reliability. 

The authors speculated that the degree of building damage could be estimated directly by training with 

machine learning in advance the relationship between the acceleration data measured by accelerometers 

installed in the building and the degree of building damage. With this method, not only each story but also 

each member can be estimated. However, in order to create a learning model, a huge amount of training data 

including the results of damage is necessary, and observation records alone are insufficient. Therefore, we 

considered to create a learning model by conducting seismic response analysis many times and using the 

analysis results and observation records as training data. This paper represents the result of creation a learning 

model to estimate the degree of damage each story using only the analysis results as the first step. 

2. Create Training Data 

2.1 Target Building 

Since the target building is preferably that with the observation records, to create training data, 3D 

model for seismic response analysis was created referring to the specimen used in the previous full-

scale shake table experiment conducted in E-Defense for a steel 18-story building [2]. Table 1 shows 

the specifications of the created analysis model, Table 2 shows the eigenvalue analysis results, Fig.1 

shows the analysis model diagram, and Fig.2 shows story shear force－story drift relationship of 

pushover analysis. 

Table 1 – Specification of the analysis model                       Table 2 – Eigenvalue analysis results 

 

Item Specification

Structure 18 story steel frame structure X Y Z θZ

Gross weight 4179kN 1 1.14 0.875 0.770 0.000 0.000 0.191

height 25.35m 2 0.37 2.681 0.138 0.000 0.000 0.034

Plan Size 6.0m×5.0m(2×3) 3 0.20 4.897 0.038 0.000 0.000 0.009

scale 1/3

mode order

(X-direction)

Effective mass ratio
Period

(sec)

Frequency

(Hz)
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Fig. 1 – 3D model for seismic response analysis 

 

Fig. 2 – Story shear force－story drift relationship of pushover analysis (X-direction) 

2.2 Seismic Response Analyses 

Training data is created by seismic response analysis with multiple seismic waves on the above 

analysis model. The ground motion used in the analysis is observed at K-NET Naruko station 

(MYG005), where the ground surface amplification peaked around the first mode period of the 

analysis model. 140 waves were selected from observation records with JMA seismic intensity of 

over 2.0 observed the period from January 1, 1996 to September 4, 2017. The analysis is performed 

in one direction (X-direction), and the maximum direction of composite vector of the horizontal two-

direction of 140 waves is used. Fig.3 shows velocity response spectrums of all observation records. 
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Fig. 3 – Velocity response spectrums of 140 waves 

The above observation record was standardized so that the maximum velocity was 115 cm/s, and a 

waveform was prepared for each 100 waves in 1% increments from an amplitude level of 1% to 100% 

(14,000 waves in total). In the experiment, since the test specimen was reduced to 1/3 scale compared 

to the one that assumed an 18-story building, the time-step of the ground motion was also scaled to 

1/√3. A case where the response becomes too large is regarded as an error case, and a result where 

the maximum story drift angle or the member ductility factor is too large is excluded from the training 

data. The case where the story drift angle exceeds 1/20 or the member plasticity exceeds 50 are 

excluded, and 12,770 cases remained. Fig.4 shows the maximum story drift angle distribution for 

12,770 cases. 

 

Fig. 4 – Maximum story drift angle distribution for 12,770 cases 
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2.3 Input / Output Data 

As the input data, the Fourier amplitude of the 1st to 19th floor acceleration data is adopted, considering that 

the response in the frequency domain is correlated with the damage to the building. The target frequency band 

was 0.5 to 3.0 Hz, 19 × 474 (0.00527 Hz steps) matrix data was used as input data. Fig.5 shows an example of 

Fourier amplitude spectrum when the amplitude is 100% in the seismic wave No.1. 

 
Fig. 5 – Fourier amplitude spectrum (seismic wave No.1, 100% amplitude) 

The output data was defined as the damage level of each story, and defined by the occurrence ratio of 

plastic hinges at the nodes on the upper and lower floors of each story. If a plastic hinge occurs (the member 

ductility factor exceeds 1.0) at any of the member ends in contact with the node, the plastic hinge is counted 

as having occurred at the node. The damage level was defined as three levels of plastic hinge occurrence ratio 

of 0%, 0 to 100%, and 100%. Figure 6 shows an example of determining the damage level and shows the 

frequency of each damage level on each story in 12,770 cases. It can be seen that the ratio of level 2 is lower 

than that of levels 1 and 3, and the damage level is tend to be higher in lower stories than in higher stories. 

 

Fig. 6 – The damage level of each story 

first mode frequency second mode frequency first mode frequency second mode frequency
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(a) example of determining the damage level (b) frequency of each damage level on each story in 12,770 cases

1 2 3

18 12,757 13 0

17 12,013 757 0

16 9,712 3,058 0

15 7,895 4,799 76

14 6,865 5,385 520

13 6,400 4,560 1,810

12 5,987 3,896 2,887

11 5,734 2,788 4,248

10 5,562 2,089 5,119

9 5,577 2,098 5,095

8 5,655 2,118 4,997

7 5,567 2,015 5,188

6 5,492 1,578 5,700

5 5,385 1,123 6,262

4 5,240 798 6,732

3 5,113 615 7,042

2 4,675 954 7,141

1 4,675 1,411 6,684

Story
Damage Level
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3. Machine Learning 

3.1 Learning Model 

Learning is performed using three models, Multi-Layer Perceptron (MLP), Convolutional Neural Network 

(CNN), and Random Forest (RF). The learning model is set individually for each story damage level, and a 

total of 18 learning models are constructed. Fig.7 shows the network architecture of MLP and CNN. The 

number of decision trees created in RF are 400, and the number of features used to create each decision tree is 

determined by grid search. The training data is divided into the training set and the test set. Since the test set 

is need to be unknown seismic waveforms for the training set, No.1-35 seismic waves cases are prepared for 

the test set (3,154 case), and the other 105 waves cases are used as the training set (9,616 case), and training 

and evaluation are performed with the dataset. 

 
Fig. 7 – The neural network architecture 

3.2 Learning Result 

The accuracy is evaluated for each learning model. Table 3 shows the result of comparing the predicted value 

and the measured value of each floor damage level of each learning model, and Fig.8 shows the result of 

comparing the accuracy of each learning model.  
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Table 3 – Comparison table of measured and predicted damage level 

 

0.8827 0.8786 0.9008
1 2 3 1 2 3 1 2 3

1 1027 72 5 1 1056 42 6 1 1040 64 0
2 85 159 97 2 119 100 122 2 70 159 112
3 43 68 1598 3 31 63 1615 3 2 65 1642

0.8884 0.8859 0.9039
1 2 3 1 2 3 1 2 3

1 1030 63 11 1 1074 0 30 1 1054 23 27
2 54 95 94 2 101 1 141 2 63 47 133
3 79 51 1677 3 86 2 1719 3 20 37 1750

0.9017 0.9036 0.9166
1 2 3 1 2 3 1 2 3

1 1152 30 39 1 1173 0 48 1 1166 2 53
2 49 31 75 2 69 0 86 2 57 6 92
3 91 26 1661 3 101 0 1677 3 53 6 1719

0.8909 0.8944 0.9115
1 2 3 1 2 3 1 2 3

1 1173 56 27 1 1207 0 49 1 1204 7 45
2 56 44 91 2 85 0 106 2 58 17 116
3 70 44 1593 3 93 0 1614 3 39 14 1654

0.8725 0.8843 0.9093
1 2 3 1 2 3 1 2 3

1 1202 79 18 1 1248 15 36 1 1235 56 8
2 68 75 107 2 100 20 130 2 64 104 82
3 53 77 1475 3 69 15 1521 3 37 39 1529

0.8703 0.8627 0.9084
1 2 3 1 2 3 1 2 3

1 1242 91 15 1 1262 76 10 1 1257 90 1
2 69 187 100 2 91 95 170 2 51 214 91
3 33 101 1316 3 34 52 1364 3 18 38 1394

0.8618 0.8488 0.8982
1 2 3 1 2 3 1 2 3

1 1265 102 2 1 1264 104 1 1 1260 109 0
2 88 305 83 2 95 199 182 2 58 326 92
3 27 134 1148 3 22 73 1214 3 14 48 1247

0.8507 0.8450 0.8827
1 2 3 1 2 3 1 2 3

1 1283 109 1 1 1284 108 1 1 1266 127 0
2 103 332 82 2 92 243 182 2 62 340 115
3 26 150 1068 3 20 86 1138 3 9 57 1178

0.8548 0.8519 0.8906
1 2 3 1 2 3 1 2 3

1 1264 110 0 1 1274 97 3 1 1263 110 1
2 97 341 88 2 93 262 171 2 61 359 106
3 24 139 1091 3 20 83 1151 3 3 64 1187

0.8503 0.8649 0.9033
1 2 3 1 2 3 1 2 3

1 1257 115 0 1 1267 105 0 1 1259 113 0
2 90 327 90 2 82 302 123 2 44 382 81
3 35 142 1098 3 29 87 1159 3 12 55 1208

0.8237 0.8510 0.8773
1 2 3 1 2 3 1 2 3

1 1284 125 0 1 1294 115 0 1 1284 125 0
2 121 493 115 2 104 511 114 2 54 569 106
3 45 150 821 3 24 113 879 3 0 102 914

0.8196 0.8456 0.8748
1 2 3 1 2 3 1 2 3

1 1358 110 0 1 1350 118 0 1 1354 114 0
2 150 793 115 2 115 869 74 2 67 903 88
3 36 158 434 3 14 166 448 3 0 126 502

0.8386 0.8488 0.8808
1 2 3 1 2 3 1 2 3

1 1491 70 0 1 1449 112 0 1 1450 111 0
2 210 993 40 2 138 1078 27 2 76 1131 36
3 11 178 161 3 0 200 150 3 0 153 197

0.8754 0.8843 0.9109
1 2 3 1 2 3 1 2 3

1 1614 73 0 1 1568 119 0 1 1581 106 0
2 178 1127 52 2 141 1213 3 2 66 1291 0
3 0 90 20 3 0 102 8 3 0 109 1

0.9081 0.9242 0.9464
1 2 3 1 2 3 1 2 3

1 1859 100 0 1 1864 95 0 1 1870 89 0
2 184 1005 0 2 138 1051 0 2 74 1115 0
3 0 6 0 3 0 6 0 3 0 6 0

0.9109 0.9318 0.9483
1 2 3 1 2 3 1 2 3

1 2386 73 0 1 2427 32 0 1 2384 75 0
2 208 487 0 2 183 512 0 2 88 607 0
3 0 0 0 3 0 0 0 3 0 0 0

0.9540 0.9597 0.9569
1 2 3 1 2 3 1 2 3

1 2968 41 0 1 3009 0 0 1 2998 11 0
2 104 41 0 2 127 18 0 2 125 20 0
3 0 0 0 3 0 0 0 3 0 0 0

1.0000 1.0000 1.0000
1 2 3 1 2 3 1 2 3

1 3154 0 0 1 3154 0 0 1 3154 0 0
2 0 0 0 2 0 0 0 2 0 0 0
3 0 0 0 3 0 0 0 3 0 0 0
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Fig. 8 – Comparing the accuracy of each learning model 

There is tendency that the accuracy of 6th to 13th stories is lower than that of the other stories in any of the 

learning model results. The damage level 2 is considered to have lower accuracy due to the small number of 

data itself, and the middle stories has a higher damage level 2 ratio than other stories, so the accuracy is likely 

to be lower. The higher stories (14th story or higher) have a higher accuracy, but this is a story where damage 

is unlikely to occur, so damage level 3 ratio is small and the ratio of damage level 1 is very large, so accuracy 

is high. As a comparison between the models, there is little difference in the accuracy between the two types 

of neural networks. On the other hand, Random Forest is more accurate on almost all floors than the other two 

models. 

3.3 Feature Importance 

In the random forest, the feature importance can be evaluated. Fig.9 shows, for the RF model of each story, 

the input data of the top 10 importance levels among the input data of the 19 × 474 Fourier amplitude. The 

importance is based on the degree of decrease in the Gini coefficient. Except for the prediction models from 

the 16th story to the 18th story, almost stories tend to have a higher importance of the Fourier amplitude in the 

band from first mode frequency (0.875 Hz) to about 1.00 Hz in the 1st to 4th floors. This suggests that most 

stories may be able to predict damage using only lower floor acceleration data without for all floors. On the 

other hand, on the 16th story model, the importance of the Fourier amplitude of 1.0 to 1.3 Hz on the 2nd to 7th 

floors is high, and on the 17th story model, the importance of the Fourier amplitude of 1.0 to 1.7 Hz on the 3rd 

to 10th floors is high. There is a tendency that the higher the target story, the higher the floor level and the 

frequency of the Fourier amplitude having the high importance. As for the 18th floor, since the damage level 

is 1 in all cases, indicating that the importance of the feature value is meaningless. 
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Fig. 9 – The feature having the top 10 importance levels 

9c-0020 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9c-0020 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

10 

 

Fig. 10 – The Fourier amplitude spectrum of each floor overlaid with feature of the top 10 

importance levels (The whiter the higher the Fourier amplitude, the blacker the smaller) 

first mode frequency second mode frequency
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In order to confirm the relationship between the Fourier amplitude spectrum of each floor and the 

importance of the feature, Fig.10 shows a color map of the Fourier amplitude spectrum of each floor overlaid 

with feature of the top 10 importance levels (when the amplitude is 100% in the seismic wave No.1). It can be 

seen that, in addition to the tendency described in Fig.9, the position of the feature with high importance 

overlaps the band with a small Fourier amplitude. The Fourier amplitude at a frequency close to the first mode 

frequency of the ground motion is important, and the Fourier amplitude in an unresponsive frequency domain 

at above floors is also important. It is presumed that this learning model predicts damage based on the ground 

motion power at the first mode frequency of building and the acceleration amplitude in the frequency band not 

affected by the building response on the upper floor. 

4. Conclusions 

We speculated that it is possible to estimates the degree of building damage from acceleration data observed 

in buildings by training with machine learning the relationship between building response acceleration and 

building damage. Therefore, as the first step, machine learning was performed using the seismic response 

analysis results as training data. As a result, it was found that the analysis made it possible to estimate the 

damage of each story of the building from the acceleration data with accuracy of 80% or more by machine 

learning using a neural network or random forest. As a result of analyzing the importance of the feature, it was 

found that the ground motion power at the first mode frequency of the building and the acceleration amplitude 

in the frequency band not affected by the response of the building on the upper floor are important. The future 

task is how to solve the problem that the accuracy of the damage level with low occurrence frequency decreases 

because the occurrence frequency of each damage level greatly differs depending on the story. In addition, 

since this study is based on the analysis results, it will be necessary to verify in the future whether it is possible 

to make estimations using actual observation data. 
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