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Abstract 

This study addresses building collapse in Mashiki Town, Kumamoto Prefecture, due to the 2016 Kumamoto Earthquake. 

In the 1995 Kobe Earthquake, many lives were lost due to the collapse of buildings. In order to reduce human casualties, 

it is important to accurately estimate the collapse or severe damage and to promote countermeasures to prevent 

especially story-collapse of buildings. However, there are not enough studies on the development of fragility functions 

to estimate story-collapse. In this study, we developed a method for identifying story-collapsed buildings using deep 

learning models (CNN) from a large number of photographic images taken during the damage investigation by Mashiki 

Town government and created a set of data necessary for developing fragility function. 

In Mashiki Town, the field investigation was carried out by the local government to issue disaster-victim certificates. 

This investigation was conducted in accordance with the guideline of the unified loss evaluation method issued by the 

Cabinet Office of Japan using the support system for livelihood rebuilding of disaster victims. This system also 

recorded photographic images of damaged buildings taken by investigators.  

In this paper, firstly, two building experts visually classified some external images of buildings to identify story-

collapsed buildings. The story-collapse is defined as Damage Grade D5 using a damage pattern chart. Secondly, using 

the set of images classified by the experts as an analysis data, a “story-collapse classification model” using CNN was 

developed that can classify external images as story-collapsed with high accuracy. In addition, an “external appearance 

classification model” was developed to remove unnecessary images except for external appearance such as interior of 

buildings using another CNN with separately created data. Thirdly, images of the remaining investigated buildings that 

were not visually classified by the experts were mechanically classified using these two models. Finally, processing 

confirmation of images by visual observation, we have developed a method for accurately distinguishing story-

collapsed buildings from all the investigated buildings in Mashiki Town. Also, a dataset of story-collapsed buildings 

was created by combining with the building location information, and their spatial distribution was visualized. 

It was confirmed that the developed extraction method can be implemented in a very short time, and the number of 

visual confirmation processes can be greatly reduced. In the future, a fragility function for story-collapsed buildings will 

be developed using this dataset.     
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1. Introduction 

This paper describes the results of an investigation concerning the damage caused by the 2016 Kumamoto 

earthquake on story-collapsed buildings in Mashiki Town, Kumamoto Prefecture, Japan. Out of the 50 

people who lost their lives as a direct cause of the 2016 Kumamoto earthquake, 38 died under collapsed 

houses or tumbled furniture; among them, 33 died due to the complete or partial collapse of their homes (i.e., 

in which the entire floor collapsed) [1]. 

In order to minimize casualties, it is important to accurately identify buildings at high risk of typical 

collapses (i.e., story-collapse damages) and promote countermeasures to prevent their collapses. Story-

collapse damages can be evaluated by determining a fragility function, which can be derived from the 

relationship between the seismic motion and building damage. A story-collapse fragility function was 

proposed after the 1995 Kobe earthquake [2]; however, not many disasters involving story-collapse damage 

have occurred since the Kobe earthquake and new functions have not been developed further in Japan. 

During the 2016 Kumamoto earthquake, Mashiki Town was suffered from two earthquakes (both of 

Level 7 on the Japanese seismic intensity scale) that caused a large amount of damage to buildings and 

directly caused the deaths of 20 people. The authors of this paper have already published reports on the 

building damage that occurred within Mashiki Town and presented fragility functions based on those data [3]. 

Those documents, however, did not contain the information on story-collapse. The photographs of  damage 

situation can effectively be used to identify story-collapsed buildings and develop appropriate fragility 

functions [4]. The local government of Mashiki Town conducted a field investigation, during which it 

gathered a large number of images. Deep learning has been reported as an effective method for the 

mechanical categorization of large numbers of images, even in the case of photographs depicting building 

damage [5, 6]. 

In this study, we applied a deep-learning convolutional neural network (CNN) to identify story-

collapsed buildings from a large number of photographic images captured during the investigation by the 

Mashiki Town government; then, we created a dataset of story-collapsed buildings in order to develop a 

fragility function. Fig.1 shows the process followed to extract the story-collapsed buildings. 

 

Fig. 1 – Process followed to extract the story-collapsed buildings 

2. Data 

A series of field investigations were conducted by the local government in Mashiki Town, Kumamoto 

Prefecture, in order to collect data for the issue of disaster-victim certificates. The support system for 

livelihood rebuilding of disaster victims [7] was applied to conduct this investigation, according to the 

"Operational guideline for damage assessment of residential buildings in disasters" (issued by the Cabinet 

Office of Japan) [8]: each building was assigned to a damage class shown in Table 1 (i.e., major damage, 
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moderate+ damage, moderate- damage, minor damage, or no damage). If a building was classified as major 

damage, the type of collapse (i.e., story-collapsed or not) was further determined by each investigator. The 

photographs taken by each investigator and the location information (i.e., longitude and latitude) relative to 

the damaged buildings were also recorded. 

This study was based on data collected through 19,497 survey sheets, which were conducted between 

April 30 and October 24, 2016. These data include: the investigation number, the damage class, information 

on the type of collapse (i.e., story-collapsed or not), photographic images, and location information, by each 

investigation. 

3. Construction of a Story-collapse Classification Model 

Two experts visually checked the external images of some buildings to whether they suffered from story-

collapse or not. The external images which were judged similarly by the experts were used to train and 

validate the CNN; then, a "story-collapse classification model" was built to classify all the external images as 

either "story-collapsed" or "non-story-collapsed." Notably, the external images discussed here included also 

rubble or vacant lots that appeared after the removal of damaged buildings. 

3.1 Extraction of the external imagery data 

Of the original 19,497 survey sheets, we extracted 1,000: 500 out of the 1,243 sheets during which the 

occurrence of story-collapse was verified by each investigator, and 500 out of the 18,254 sheets during 

which the occurrence of story-collapse was not verified by the investigators. This extraction performed 

randomly, and a stratified sample was taken from the investigations in which investigators did not determine 

whether story-collapse occurred or not, in order to maintain the ratio of each damage class. Then, a single 

external image was visually extracted for each surveyed building, for a total of 1,000. 

Two experts visually checked these 1,000 external images in order to determine the eventual 

occurrence of story-collapse: a chart by Okada and Takai [9] was used to define the damage grade caused by 

the story-collapses (i.e., Damage Grade D5), shown in Table 1. Table 2 provides a breakdown of the data 

obtained from 951 external images (those judged in the same way by the two experts). The remaining 49 

images represented cases in which story-collapse could not be determined: the two experts reached different 

conclusions or were both unable to identify whether story-collapse occurred. Images for which the experts 

provided contrasting results included those in which it was difficult to determine the collapse of a given 

building story, and cases where it was difficult to determine whether an image depicted a site after a 

damaged building had been removed. 

Table 1 – Earthquake loss evaluation classes of buildings by local governments in Japan and schematic 

images of other damage classification methods (Source: Yamazaki et al. [3]) 
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Table 2 – Number of images visually inspected for story-collapse in external imagery data 

  

visually checked by experts 
Total 

story-collapsed non-story-collapsed 

type of collapse by 

investigator 

story-collapsed 299 165 464 

non-story-collapsed 9 478 487 

Total 308 643 951 
 

3.2 CNN structure, training, and validation 

The external imagery data (951 images) built in Section 3.1 were used as an analysis data to train and 

validate the CNN; then, we built a model to accurately classify the external images into two classes (i.e., 

"story-collapsed" and "non-story-collapsed"). These operations were conducted based on a Python deep 

learning library called Keras [14] and using TensorFlow as backend. 

In building the model, transfer learning was performed by fine-tuning the trained CNN. This use of 

fine-tuning has been reported to build classification models that are more accurate than approaches that do 

not use a trained CNN, or that use a trained CNN simply as a feature extractor [10]. After exploring several 

CNNs, model structures, and training methods, we decided to use ResNet50 [13] trained with ImageNet [11, 

12] as our trained CNN. In order to perform fine-tuning, we used global average pooling to create a fully 

connected layer and a softmax function to create an output layer (used to classify images as either "story-

collapsed" or "non-story-collapsed"). And we deleted existing fully connected layer and output layer, and 

bound them to newly created layers. The structure of the resulting CNN is shown in Fig.2. 

 

Fig. 2 – Structure of the CNN 

The analysis data were split at a 9:1 ratio: 855 pieces of training data and 96 pieces of validation data. 

In splitting the data, the class ratio between "story-collapsed" and "non-story-collapsed" was retained by 

employing a stratified splitting method. Fig.3(a) shows the results of the model training. Notably, the weights 

were updated in all CNN layers during the model training. We conducted an augmentation process during the 

data training and searched for hyper parameters to increase its accuracy. The blue and orange lines show the 

accuracy obtained when the training data and validation data were used as input data, respectively. We 

confirmed that the lines converged within 11 epochs, so we stopped training and then used the CNN with 

that weight set as our story-collapse classification model. We then used this story-collapse classification 

model to predict classification classes for validation data, and got an accuracy of approximately 94%. 

Grad-CAM [15] is widely used to visualize areas that could serve as a basis for CNN to determine 

classifications. Fig.3(b) shows an example of the use of Grad-CAM to overlay a heat map over an image 

classified by the story-collapse classification model as depicting story-collapse. The area highlighting a 

collapsed story is thought to be a basis for the classification. 
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(a) Changes in the accuracy of the model 

during the training process 

 (b) Example of visualization obtained using 

Grad-CAM 

Fig. 3 – Training and validation of the story-collapse classification model  

4. Construction of an External Appearance Classification Model 

Our story-collapse classification model was able to accurately classify the images as depicting “story-

collapsed” or “non-story-collapsed” buildings. However, many photographic images taken by the 

investigators did not depict the outside of buildings, but rather internal views of buildings and other elements. 

Therefore, we decided to build a separate model to extract only the external images. First, we visually 

checked the photographic images of some buildings to determine whether they represented external images 

or not; then, we used them to train and validate the CNN. Finally, we built an "external appearance 

classification model" to classify the photographic images as either "external" or "others". 

4.1 Extraction of the investigation imagery data 

Of the 19,497 surveyed buildings, we randomly extracted 100 buildings which were found to be major 

damage. Survey data that were extracted in Section 3.1 were excluded, along with those in which it could not 

be determined whether buildings suffered story-collapse or not. The 3,067 images of the extracted surveys 

were visually checked by an expert, who then separated them between “external” (286) and “others” (2,781). 

A total of 4,018 images (including 951 external image data mentioned in Section 3.1) were hence used as 

investigation image data for further analyses. Table 3 shows a breakdown of the data. 

Table 3 – Number of images visually examined and categorized as “external” or “others” in investigation 

imagery data 

 

visually checked by experts 
Total 

external others 

Judged by investigator 

as major damage 
286 2,781 3,067 

External imagery data 

in Section 3.1 
951 0 951 

Total 1,237 2,781 4,018 

 

4.2 CNN structure, training, and validation 

We used the investigation imagery data (a total of 4,018 images) presented in Section 4.1 to train and 

validate the CNN, and then built a model to classify each image (as "external" or "others"). As described in 
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Section 3.2, we used ResNet50 trained with ImageNet as the CNN and performed a transfer learning through 

fine-tuning. We created a new fully connected layer and an output layer, and then built the CNN (see its 

structure in Fig.2). 

The analysis data were split at a 9:1 ratio (between 3,616 pieces of training data and 402 pieces of 

validation data). In splitting the data, a stratified splitting method was employed so to retain the desired class 

ratio between the two classes of images "external" and "others". Fig.4(a) shows the results of using those 

data to train the model. For the model training, we followed three steps similar to those described in Section 

3.2: 1) we updated the weights in all the CNN’s layers, 2) we applied an augmentation process to the training 

data, and 3) we searched for hyper parameters that could increase the accuracy of the model. The blue and 

orange lines in Fig.5(a) show, respectively, the accuracy obtained when the training and validation data were 

used as input data. The line of validation data, which is the orange line, converged within six epochs; after 

that, we stopped the training and used the CNN with the correspondent weight set as our external appearance 

classification model. This model was then used to predict the classes of the validation data, reaching an 

accuracy of ∼ 97%. 

Similarly as shown in Section 3.2, Grad-CAM was applied to visualize areas (i.e., sky or showing the 

entire external appearance of a building) that could serve as a basis for CNN to classify the images (Fig.4(b)). 

  

(a) Changes in the accuracy of the model 

during the training process 

 (b) Example of visualization obtained using 

Grad-CAM 

Fig. 4 – Training and validation of the external appearance classification model 

5. Extraction of Story-collapse Buildings 

Story-collapsed buildings were extracted from investigations in which the investigator determined that the 

building was major damage, and the experts did not visually identify whether story-collapse occurred or not 

in Section 3.1. This final extraction was made using the two models described in Sections 3 and 4, followed 

by a visual inspection performed by an expert. Survey data including damage classes other than "major 

damage" were excluded from extraction, since they likely did not include story-collapsed buildings. In fact, 

the images in which buildings were classified as "moderate+ damage," "moderate- damage," "minor 

damage," or "no damage" were not included in the images visually identified story-collapse by experts in 

Section 3.1. 

5.1 Construction of the classification method 

The story-collapse and external appearance classification models were hence used to mechanically classify 

98,958 photographic images (obtained from the 4,268 surveyed buildings) in which the buildings were 

determined to be major damage. Subsequently, we extracted 1,365 buildings in which at least one image was 

classified as depicting the state of a story-collapse. Additionally, we extracted 113 survey data that did not 

include any external images (as determined by the external appearance classification model). An expert 
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visually examined the photographic images of all these surveys (a total of 1,478) and extracted 868 story-

collapsed buildings. 

The model-based image extraction and classification were both performed by computer. This allowed 

a particularly quick extraction of photographic images for visual confirmation, from a large amount of 

original data collected in the field investigations. 

The 868 buildings extracted as explained above were combined with other 308 buildings (story-

collapsed buildings extracted from the 308 images in the external imagery dataset; see Section 3.1), for a 

total of 1,176 buildings. 

5.2 Validation of the classification accuracy 

We attached the longitude and latitude representing the location information of each investigation site based 

on the investigation number to these 1,176 buildings, and created a final dataset of story-collapsed buildings. 

Fig.5 shows the spatial distribution of the survey sites: red points, that show our dataset, were concentrated 

in the areas where collapsed, crumbled, and crushed buildings were also concentrated in the previous reports 

[16, 17]. 

 

Fig. 5 – Spatial distribution of the extracted story-collapsed buildings 
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6. Conclusion 

In this study, we developed models applying a CNN and trained them using photographic images collected 

during local government investigations. In this way, we successfully developed a method for the accurate 

identification of story-collapsed buildings in Mashiki Town. The proposed identification method can be 

implemented quickly, reducing significantly the amount of time dedicated to visually inspecting photographs 

of damaged buildings. Interestingly, the data points corresponding to story-collapsed buildings were 

concentrated in the areas that suffered particularly heavy damage, demonstrating the accuracy of our 

extraction method. In the future, we plan to use the obtained dataset to build a story-collapse fragility 

function. 
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