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Abstract 
During large earthquakes, it is important to quickly determine the damage distribution in housing structures for disaster 
prevention measures. Currently, the acquisition of information is time consuming as it is only done manually by local public 
organizations. Therefore, a means to gather information promptly and objectively is required. As an effective tool for 
detecting disaster damage analysis of satellite imageries is widely studied. However, it is still difficult to determine building 
damages due to limitations in the resolution of satellite imagery. In this study, a system to detect building damage from a 
set of multi-temporal satellite imageries was developed by applying a recent machine learning approach. The two basic 
ideas to realize the system are as follows: First, using the information on the positions and shapes of structures stored in a 
GIS database, the photographic scope of each residence in wide-area photographic imagery was identified and small pho-
tographic fragments at individual structure level were extracted. Second, using a classifier, which determines whether the 
individual fragments depict collapsed structures or not, the damage in residential structures in the affected area was assessed. 
In this study, the effectiveness of the following two concepts for improving the performance of the classifier was evaluated. 
Using images of terrain periodically captured by satellites, images of the affected area for the two cycles (i.e., before and 
immediately after the earthquake) were fed simultaneously into the classifier to improve classification performance. The 
spatio-temporal convolution, which is considered a generalized method of image subtraction, was found the most effective. 
Then, rankSVM, a recently proposed machine learning model for handling imbalanced disaster-related data and the prob-
lems the pose to classification, was applied. 
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1. Introduction

Obtaining accurate information on the damage situation when natural disasters occur is the first priority for an 
appropriate response. Typically, information-gathering during emergency relies on the on-the-ground assessments 
of staff working in public organizations and reports from citizens. However, these measures designed by humans 
are highly time-consuming and gathering prompt information becomes more difficult when the scale of the disaster 
is large. Therefore, a faster and more objective method of gathering damage information is required. 

One promising method for gathering damage information is the use of remote sensing technologies. Specifically, 
satellites can be used as platforms for optical sensors, which gather precise imagery, and for synthetic aperture 
radar, which can record terrain regardless of weather and daylight. By their nature, these technologies are well 
suited to gather damage information from natural disasters in terms of coverage area, speed, and weather tolerance 
among others. In addition, work on adapting these forms of information for disaster response is underway. 

After an earthquake, it is important to assess building collapses at the micro level of individual residential struc-
tures to save lives. However, detecting such structural damage requires a spatial resolution beyond the limits of 
current satellite sensing data, which imprecisely detect damage; hence, making more precise detection is an im-
portant research focus. 

Thus, this study proposed and developed a technology for assessing damage condition at residential level using 
wide-area photographic images from satellite sensors and by applying recent machine learning techniques. The 
proposed technology comprises two processes. First, the photographic scope of each residence in wide-area pho-
tographic images is identified using the information on the positions and shapes of structures stored in a GIS 
database. Then, small photographic fragments of each individual structure are extracted. Second, using a classifier, 
which determines whether these individual fragments depict collapsed structures or not, the damage in residential 
structures in the affected area is assessed. 

In this study, the effectiveness of the following two concepts for improving the performance of the classifier 
was tested. First, using images of terrain periodically captured by satellites, images of the affected area for the two 
cycles (i.e., before and immediately after an earthquake) were simultaneously fed into the classifier to improve 
classification performance. Here, methods for extracting features from images before and after an earthquake were 
compared. Using spatio-temporal convolutional layers, which is considered a generalized method for image sub-
traction, was found most effective. 

Additionally, the data related to disaster damage are typically imbalanced, in which acquiring data on damaged-
seeming class is more difficult than on undamaged-seeming class. Thus, rankSVM, a recently proposed machine 
learning model that handles imbalanced data and the problems the data pose to classification, was applied. 
RankSVM does not pass through processes that distort the nature of data distribution, such as underpredicting or 
adjusting cost functions, for it can learn directly from imbalanced training data. Furthermore, it maximizes RoC-
AUC, which is one of the indices for assessing classifier performance. It has important qualities as a classifier for 
imbalanced data related to the extent of damage. In this study, rankSVM was used to replace the output layer of a 
deep learning classifier. Its effects on classifier performance, particularly from the perspective of improving learn-
ing performance based on imbalanced data, was tested. 

To verify the above two ideas, a dataset based on the satellite photography from the affected areas during the 
2016 Kumamoto earthquake was constructed. The model was evaluated through a cross validation test. From the 
numerical experiment, it was found that spatio-temporal convolution of multi temporal images was highly effec-
tive and that learning from imbalanced training data that were not undersampled using rankSVM yielded a slight 
improvement in the classifier performance. 

2. Related work

A comprehensive review by Dong and Shan [1] showed detection of building damage induced by an earthquake 
via remote sensing and acquisition of data through various sensors, such as the optical, SAR, and Lidar. Many 
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studies have focused on the changes in the data observed before and after the disaster. Tong et al. [2] and Matsuoka 
and Yamazaki [3] proposed methods for determining structure collapse based on threshold index. The former 
calculated the difference in height of each structure derived from DEM before and after the earthquake, while the 
latter calculated the difference in the backscattering coefficient of the SAR radar. Further, recent studies have 
utilized machine learning models in detecting earthquake damage. Mansouri and Hamednia [4] applied a SVM 
model based on the features of an optical image difference before and after the disaster. Bai et al. [5] applied the 
K-nearest neighbor algorithm to the difference value of SAR images before and after the earthquake.  

Satellite sensing for detection of an earthquake damage to a structure and techniques to classify the extent of 
damage based on pattern recognition models that determine the differences in the features of the images before 
and after the earthquake have often been adopted. It has been known that pattern recognition technology has dras-
tically improved its performance in recent years with the progress of deep learning [6]. The convolutional neural 
network, whose effect has been demonstrated by Krizhevsky et al. [7], has improved the performance of classifiers 
by automatically constructing filters that extract features from an image via back propagation. Recently, many 
cases can be seen where CNN filters are extended in three dimensions (3D) and are used for the extraction of 
features from spatio-temporal data. Tran et al. [8] discussed the theoretical differences and advantages of 3D CNN 
with cases where a group of images are stacked in a feature dimension to which a 2-dimensional filter is applied. 
Ji et al. [9] applied a 3D CNN to human action recognition based on time-series images and demonstrated its 
effectiveness. This study tried to apply this recent machine learning technique to satellite sensing imagery with an 
aim of improving task processing capability for earthquake damage detection.  

Data sets related to natural disasters generally have class imbalance problem. This is due to the lower incidence 
of natural disasters and damage and the higher difficulty in obtaining data corresponding to damage classes than 
to non-damage classes, including normal state. The conventional methods in dealing with imbalanced data on a 
machine learning technique include adjustment of data number via under sampling, for example, by discarding 
part of the data from a class with higher number of data or by adjusting the penalty in the cost function. The 
conventional approaches have been summarized by He and Garcia [10]. As these techniques may induce loss of 
important information and over fitting, different approaches have been proposed in recently. Wallace et al. [11] 
demonstrated the effectiveness of combining under sampling with an ensemble learning model. Cruz et al. [12] 
argued the effectiveness of applying a pairwise learning model to classification tasks from imbalanced data via 
learning to rank. The pairwise learning models use pairs of positive and negative training data; thus, no learning 
biases arise for a particular class. It also has the benefit of being able to learn imbalanced data without distorting 
the distribution characteristics of data by adjusting the data count. Among pairwise learning models, rankSVM 
[13] was the one used in this study. As explained later in the paper, rankSVM has the necessary property of per-
forming classification tasks corresponding to anomaly detection, including detection of disaster damage. 

3.  Methods 

3.1 Overview of the proposed scheme 
The proposed earthquake damage detection system consists of processes shown in Fig. 1. First, information on the 
position and shape of residential structures is extracted from a GIS database of regions affected by an earthquake. 
Then, based on the information, the pixel position at which the concerned structure shown in the broad satellite 
imagery is identified and a small image segment corresponding to the structure is isolated. This operation is applied 
to all residential structures in the target region to create a small image for each structure. Then a classifier is applied 
to this small image to determine the collapse or non-collapse structure in the image, so as to determine the damage 
in each structure in the affected region. 
Through this process, information extraction from a GIS database and identification of the location of the struc-
tures in the satellite imagery can be performed with ease as the location information is attached to each pixel in 
the satellite image. When creating a dataset used for an assessment experiment, which is described in section __ 
below, the validity of the program codes is manually confirmed. This paper presents the development of a classifier 
to be applied to small images.  
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Fig. 1 – Flowchart of the proposed scheme 

3.2 Feature extraction from multi-temporal satellite imagery 
Since satellites periodically capture the surface of the earth, imageries right before the disaster, as well as imageries 
after the disaster can be obtained. Previous studies have reported that comparing the information obtained before 
and after a disaster can improve the accuracy of damage detection.  

Most researches have used difference values for images before and after the disaster. However, the difference 
value is just one of the many characteristics that can be obtained from multi-temporal images. This suggests that 
the use of more features can potentially improve the accuracy of damage detection. Thus, in this study, a three-
dimensional convolutional neural network (3D CNN) was applied as a classifier to solve classification tasks from 
a group of temporal images. The convolution layer in 3D CNN is an extension of the 2D filter in a normal CNN. 
In this study, a filter with one temporal dimension and 2 spatial dimensions was used. The 3D CNN automatically 
configures the values of filters through back propagation and extracts data features in temporal or spatial direction 
that is effective in performing the task.  
   This study used a deep learning model, which combined the feature extraction layers of the 3D CNN with the 
fully connect layers as a classifier to classify quake-induced damage from the multi-temporal images. 

3.3 Learning from imbalanced disaster data 
Generally, there is less data that corresponds to times of disaster than to normal or non-damage times. Therefore, 
the issue of class imbalance is one of the important problems that must be addressed in detecting disaster damage. 
As mentioned later in this paper, among images used in this research for the cross validation test, there was a 
greater number of non-damaged structures than damaged structures. Thus, this data set had a class imbalance issue.  

In this study, rankSVM was adopted as a classifier to address imbalanced data. The rankSVM is originally one 
of the machine learning models that are used for learning to rank. Recently, its application for binary classification 
of class imbalance data has been proposed.  

If positive class data P={x1, x2, …, xn} and negative class data N={x’1, x’2, …, x’m} are given, binary classifi-
cation problems can be solved by an evaluation function f, where, for arbitrary xi and x’j, the following formula 
holds. 

𝑓ሺ𝒙ሻ  𝑓൫𝒙′൯ (1) 
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The rankSVM constructs the evaluation function f with feature conversion mapping φ corresponding to an arbitrary 
kernel and performs linear conversion as follows. 

𝑓ሺ𝒙ሻ ൌ 𝒘 ∙ 𝜑ሺ𝒙ሻ (2) 

The optimal value of w is obtained by solving the following optimization problem [14]. 

𝒘୭୮୲ ൌ argmin
𝒘

𝐶 𝑙 ൬𝒘 ∙ 𝜑ሺ𝒙ሻ െ 𝒘 ∙ 𝜑 ቀ𝒙′ቁ൰ 
1
2
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ሺ,ሻ

 (3) 

Using the solution of the equation for the evaluation function, the rankSVM acquires the following two im-
portant properties of a classifier for imbalanced data.  
  Firstly, in the equation of the optimization problem, the positive data xi and the negative data x’j are always used 
in a pair as a training data sample. Therefore, despite the difference in the number of data between two classes, a 
class with a larger data count would not appear more in the training data sample than the other class and the 
learning bias associated with the imbalance in data count would not occur. Thus, using the rankSVM, imbalance 
data can be used directly without resampling or adjusting the cost function and without undermining the properties 
of the original data distribution.  
   Secondly, the first term on the right side of the optimization problem equation represents a loss due to pair (i,j) 
that does not satisfy the condition f(xi) > f(x’j). Thus, the minimization of this term works in a way that maximizes 
the number of (i,j) pairs that satisfy the equation. The ROC-AUC, which is one of the indices used to evaluate 
performance of classifiers, can be represented as follows using the evaluation function f [15]. 

ROC-AUC ൌ
หሺ,ሻ; ሺ𝒙ሻவ൫𝒙ᇲೕ൯ห

|𝑷|ൈ|𝑵|
, (4) 

 
where |P| and |N| represent the positive and negative data count, respectively and |(i,j) ; f(xi) > f(x’j)| represents the 
number of pairs of a positive and a negative data that satisfies f(xi) > f(x’j). Taking all these considerations together, 
the evaluation function f in the rankSVM is learned to maximize the ROC-AUC [14]. If the ROC-AUC value is 
high, it means that a higher true positive rate has been achieved in a lower false positive rate. This is an important 
property as a classifier for anomaly detection, such as in disaster damage detection. 

3.4 Experimental study 

3.4.1 Data set 
The performance of the machine learning model described above was verified using the results from a field re-
search conducted in Mashiki town, which was one of the affected areas of the 2016 Kumamoto earthquake in 
Japan. A dataset of satellite images of the affected residences, which were composed of 326 collapsed buildings 
and 648 unaffected buildings was constructed. In this study, more focus was given on the data obtained through 
optical sensors. From a set of pre- and post- disaster images captured at two time points [the first on December 15, 
2015 and the second on April 29, 2016 (Fig. 2)] by the optical satellites Spot 6 & 7, a small image segment for 
each residence was obtained. The data resolution was 1.5 m/pixel, and each image was resized to 40×40 pixels in 
order to adjust the size, which varied according to the footprint of the residence.  
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3.5 Evaluation on the effectiveness of 3D CNN 
To test the validity of using a 3D CNN as a means to extract features for the classification of disaster damage from 
multi-temporal images, various input tensor forms including difference values of images and the corresponding 
deep learning models were developed (Table 1) and their classification performances were compared.  

In case No. 0, an input tensor was developed using a post-disaster image only. The tensor had three dimensions: 
width (w), height (h), and RGB (3ch) and a normal 2D CNN was used.  

Case No.1 represented a case where an input tensor was developed by calculating the image difference values 
of pre- and post-earthquake images. Here, the number of dimensions of the tensor, as well as the CNN model, was 
similar in No. 0; however, it differed from No. 0 as it used pre-disaster images.  

In case No. 2, a w×h×6ch input tensor was constructed by stacking a post-earthquake image as 4 to 6ch data, 
following a 3ch pre-earthquake image. Here, the computation process of the CNN was identical to that of the 
normal CNN except for 6ch for the number of features in layers. However, contrary to case No. 2, the data were 

               
(a) Pre-disaster image (December 15, 2015)                                (b) Post-disaster image (April 29, 2016) 

 
Fig. 2 – Pre- and post- earthquake imagery of Mashiki town in Japan taken by the optical satellite SPOT 6 & 7 

 
Table 1 – Overview of the test cases for comparing the input tensor forms and the corresponding convolutional 

neural network models 
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directly input without calculating the difference between the images before and after the earthquake. Hence, the 
input tensor was expected to be more informative. 

Case No. 3 was one where an input tensor was constructed as a w×h×t×3ch data by stacking pre and post- 
earthquake images in the temporal dimension. The computation process of the CNN was 3D. It was expected that, 
through back propagation, feature extraction filters that capture more detailed features in the spatial and temporal 
direction could be formed.  
   By comparing the performances of the model under these four cases, the input data form and deep learning 
model that are suitable for the detection of quake-induced damage can be discussed. Note that, for comparison, 
the number of layers in the model was equalized, and the number of internal parameters was almost equalized in 
each case. To illustrate this, the model architecture of case 3 is shown in Fig. 3. 

The number of data used in the cross validation test is shown in Table 2. In this comparative test, images in the 
non-damage class were randomly under-sampled from the original dataset in order to equalize the data count 
between the two classes.  

3.6 Evaluation on the effectiveness of rankSVM 
The classification performance of rankSVM for an imbalanced disaster data set was also verified as follows. 

From a pre-trained 3D CNN model used in the above test, fully connected layers were replaced by an SVM 
classifier (Fig. 4), which in turn learned from an imbalanced training data as shown in the Table 2. Then the 

 

 
Fig. 3 – Model architecture of 3D CNN for case 3 

 

 
Table 2 – Number of images used for damage detection 

(Data augmentation is applied to the training data.) 
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classifier was tested for its performance against the test data. Three kinds of SVMs as classifiers were tested: 
normal SVM, one class SVM, and rankSVM. The hyper parameter values for each SVM as well as the type of 
kernel was determined via grid search. Moreover, a case in which the number of training data was equalized by 
under sampling was compared with a case where imbalanced training data were straightforwardly used for learning. 
For normal SVM and one class SVM, models implemented in scikit-learn library were used. RankSVM was im-
plemented from scratch in this study following Pegasos algorithm [16]. 

 

4.  Results and discussion 

4.1 Comparison between input tensor forms 
The result of the comparison test for the evaluation of 3D CNN is summarized in Table 3. The performance of the 
models was evaluated in terms of accuracy, precision, recall, F-measure, and ROC-AUC. Compared to case 0, 
cases 1-3, where both pre- and post-earthquake images generally indicate better performance, show the effective-
ness of multi-temporal satellite imagery for disaster damage detection. The 3D CNN model in case 3 has the best 
classification performance among the models compared. As the 3D convolution filters can extract more general 
features from spatio-temporal data including image difference values, it is considered that deep learning models 
acquire features that contribute to earthquake damage detection through the learning process.  

As indicated by the high ROC-AUC value, the model in case 3 showed good performance as indicated by the 
ROC curve (Fig. 5). Comparing to other models, higher true positive rates can be achieved under a certain false 
positive rate by the classifier model in case 3. In disaster damage detection, it is important, in the context of safe 
decision making, not to overlook severe damage, even to a point of overestimation. The high ROC-AUC value of 
3D CNN is an essential property of a damage detection model. 

 
Fig. 4 – Classifier by replacing fully connect layer with SVM 

 
Table 3 – Comparison of the model performance 
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4.2 Learning from imbalanced data 
Table 4 shows the classification performance of SVM classifiers using learning balanced or imbalanced training 
data. The performance of fully connect layers is also shown, which presents the results before replacing the clas-
sifier layers in Fig. 4. As a result of grid search, the Gaussian kernel was applied in all SVM model. 

The normal SVM classifier did not perform better than the fully connected layer. Furthermore, the performance 
of SVM with imbalanced training data was lower than that with balanced data, which is a typical problem of 
imbalanced data. The decrease in the performance of one class SVM was not remarkable and the performances 
were almost similar between the different training data balance. In the training process of one class SVM, only the 
data for the non-damaged class, whose data count was larger than the other class, were utilized. Thus, there was 
no need to discard the non-damaged class data to balance the data count. Instead, the data for the damaged class 
were excludedfrom the learning process. The results showed that the performance of one class SVM was not better 
than the fully connected layer in this case. Note that one class SVM is usually an effective tool for anomaly 
detection. However, in this case, the features of normal data may have been diverse because the data consisted of 
various types of non-damaged housing structures. Learning the classification surface of one class SVM had be-
come difficult probably due this diversity. 

However, using the rankSVM as the classifier layers resulted in a slightly better performance. Moreover, the 
performance of rankSVM with imbalanced training data improved slightly than that with under sampling case. 
Though the improvement was small, the result indicated that the classification performance was possibly enhanced 
by increasing only the number of non-damaged data, which can be easily obtained. The high learning potential 

 
 

Fig. 5 - Comparison of ROC curves 

 
Table 4 – Performance of SVM classifiers 
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from imbalanced training data, which rankSVM possesses is an important property of a classifier for disaster 
damage detection. 

Figure 6 shows the inference result obtained by the proposed classifier with the combination of 3D CNN and 
rankSVM. Note that both the inference results from 648 training data and that from 326 test data were included in 
this figure. Compared to the ground truth data, the inference results reproduced better the extent of damage in each 
region. 

5.  Conclusion 

This study proposed a scheme for earthquake damage detection using satellite imagery and recent machine learn-
ing techniques. Using the properties of time series images and class imbalance in satellite imagery, this study 
verified the effectiveness of 3D CNN and rankSVM. Experimental results show that 3D CNN performed better 
than with the other schemes for feature extraction from multi-temporal images. Moreover, although the improve-
ment in the performance obtained from replacing the classifier layers by rankSVM was slight, it indicated a pos-
sibility that classification performance can be enhanced by increasing only the number of non-damaged data, 
which can be easily obtained. The results show that the proposed method is suitable for the properties of satellite 
imagery. 
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Fig. 6 – Result of earthquake damage detection by the proposed scheme (©2020 Google) 
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