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Abstract 

Nonlinear analysis is inevitable in evaluating the structural performance and often require time-consuming computation, 

especially for large-scale structures. This study propose a efficient nonlinear analysis method for seismic performance 

evaluation of engineering structure based on the inelasticity separated finite element method (IS-FEM), which is 

developed in recently years through generalizing the displacement decomposition concept in force analogy method 

(FAM) and have the characteristic of high efficiency and the potential of wide applicability. Within the framework of 

the proposed method, the nonlinear material strain is firstly decomposed into two parts, which are linear-elastic strain 

and inelastic strain. Then, the interpolation scheme is adopted to model the inelastic strain field of element 

approximately and the governing equation with the characteristic of inelasticity-separation is derived by using the 

principle of virtual work. Because the inelastic degrees of freedom representing the local nonlinear behavior of structure 

are separated from the global system, the structural stiffness matrix can keep in linear elastic state during analysis and 

this lead to the fact that the Woodbury formula can be used to implement efficient nonlinear analysis. By incorporating 

the governing equation of IS-FEM with the equation of motion and using the Newmark average acceleration method for 

integration, the inelasticity-separated dynamic governing equation is developed, in which the value of time increment is 

required for constructing the effective elastic stiffness. Because in such case the achievement of high efficient 

computation of Woodbury formula in each step require the effective elastic stiffness keeping unchanged as much as 

possible, the time increment cannot change optionally during analysis and this indicate that the computational cost of 

the whole analysis process may be huge. To take the efficiency advantage of Woodbury formula in seismic response 

analysis, an adaptive dynamic analysis strategy (ADAS) is finally proposed. The main idea of the ADAS is that several 

time increments and the corresponding coefficient matrixes required in Woodbury formula are predefined before 

analysis, and in each incremental step the appropriate time interval and the corresponding coefficient matrixes are 

determined adaptively according to the instantaneous inelastic state of global structure. The proposed ADAS not only 

can meet the requirement of Woodbury formula per step, but also be helpful for improving the efficiency of whole 

dynamic analysis process.   

Keywords: Inelasticity-separated finite element method; nonlinear analysis; Woodbury formula; computational 

efficiency   
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1. Introduction

Evaluating the nonlinear seismic performance of engineering structures is of great important in performance-

based earthquake engineering [1-2]. There are many methods developed for performing nonlinear seismic 

performance evaluation of structures, such as static pushover analysis method and nonlinear dynamic 

analysis method. The nonlinear dynamic analysis method is known as the most accurate method because it 

can simulate the actual response of structure under earthquake excitation. However. Because of the huge 

computation cost required for the nonlinear dynamic analysis, it is hard to apply this method widely. Thus, 

developing advanced nonlinear seismic response analysis method that can improve computational efficiency 

still attract many attention.  

To analyze the nonlinear response of engineering structure which is dependent on the loading path, an 

incremental step-by-step approach should be employed and iteration usually cannot be avoided. This lead to 

the fact that the global stiffness matrix should be updated and re-factorized repeatedly. With the increase of 

the scale of the problem, the dimension of structural stiffness matrix increase and the updating and re-

factorization of the global stiffness matrix become a computational expensive process [3]. To reduce the 

computational cost of nonlinear analysis process, many high efficient methods have been proposed [4-8], 

such as the sparse solution algorithm of system of equations, parallel computation technique etc. By 

decomposing the total displacement of each structural member according to the corresponding initial elastic 

stiffness and formulating the inelastic displacement of each member as additional degrees of freedom 

(DOFs), Wong et al. [9] successfully applied the force analogy method (FAM) which was original proposed 

by Lin [11] in civil structures for implementing high efficient seismic response analysis. The high efficiency 

of the FAM stem from the fact that it can depict the global structural nonlinear behavior through unchanging 

stiffness matrix during analysis [9,10]. Considering that the nonlinearity generally occur at some local 

regions of structure, many researchers aim to achieve high efficient nonlinear analysis by taking advantage 

of the local nonlinearity characteristic. The structural reanalysis, which intend to efficiently calculate the 

response of structures with local modification, provide a typical way for solving the local nonlinearity 

problem. Based on the concept of displacement decomposition in FAM and the fundamental theory of finite 

element method (FEM), Li et al. [12-14] proposed a novel efficient nonlinear analysis method for local 

nonlinearity problem, which is called inelasticity-separated finite element method (IS-FEM). Because this 

method begin at the material level and was developed based on FEM, it can be used to implement refined 

simulation and has the advantage of wide applicability. Although the basic framework of IS-FEM for 

nonlinear iterative solution and the method of solving the equation of motion have been presented by Li et al. 

[12,13], The seismic response method based on the IS-FEM still should be investigated.  

In this paper, the basic theory of IS-FEM is firstly explained. Then, by introducing the inelasticity-

separated governing equation into equation of motion and employing Newmark average acceleration method, 

the inelasticity-separated seismic response analysis method is established. Because the Woodbury formula is 

adopted as the solver, the updating and re-factorization of large dimension global stiffness matrix can be 

avoided per iteration and the main computational effort only focuses on a small dimension matrix 

representing local nonlinearity. Considering that in each step, the achievement of high efficient computation 

of Woodbury formula require the effective elastic stiffness, which is related to value of time interval, 

keeping unchanged as much as possible. The time interval cannot change optionally during analysis and this 

indicate that although the high efficiency can be achieved in each iteration, the computational cost of the 

whole analysis process may be huge because the minimum value of time interval generally should be 

adopted in such case. To make full use of the efficiency advantage of Woodbury formula, an adaptive 

dynamic analysis strategy (ADAS) is proposed for implement high efficient seismic response analysis. 

Finally, a numerical example is presented to illustrate the application of the proposed method.  
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2. Basic theory of IS-FEM 

By decomposing the strain of the nonlinear material into two parts, linear-elastic strain and inelastic strain, 

the IS-FEM can keep the structural global stiffness matrix unchanged throughout the whole analysis process 

and express the local nonlinear behavior through separated manner. Fig. 1 illustrates the strain 

decomposition process of uniaxial stress-strain relation of a nonlinear material. It can be seen that according 

to initial material modulus Ee, the total strain ε at point Q can be decomposed as: 

                                                                                    (1) 

where ε′ represent linear-elastic strain, and ε″ represent inelastic strain. Additionaly, the stress σ at point Q 

can be expressed as: 

( )e eE E                                                                               (2) 

For the general case of multiaxial strain-stress relations, the strain decomposition equation (Eq. (1)) and the 

stress calculation equation (Eq. (2)) can be generalized accordingly by replaceing the strain, stress and elastic 

modulus by the corresponding vector and matrix forms.  

 

 

Fig. 1 Strain decomposition of uniaxial stress-strain relation of nonlinear material 

 

Then, the inelastic strain field of a element can be modeled by interpolation scheme in which some 

collocation points should be predefined for interpolation. Considering that the nonlinearity generally occur 

within some local regions and incremental solution scheme should be used for analysis, it can be inferred 

that in a certain step, the incremental inelastic strains at most collocation points will be equal to zero and 

nonzero inelastic strain increments only occur in the collocation points that are located in local nonlinear 

regions. Based on the principle of virtual work, the incremental inelasticity-separated governing equaiotn can 

be constructed in which only the collocation points with nonzero incremental inelastic strain are considered. 

The governing equation can be written as: 

T

K K X F

K K - Ε 0

e

p pr

       
            

                                                                  (3) 

where the matrix Ke with dimension nn is the initial elastic stiffness matrix of global system and n 

represent the total number of displacment DOFs of structure; ∆F and ∆X are the vectors of incremental 

applied load and nodal displacement respectively; 
pr
Ε  (with dimension m1) is the vector that is assembled 

by the nonzero incremental inelastic strains, each term in this vector represent an inelastic degree-of-freedom 

(IDOF) and m represents the number of IDOFs; K′ (with dimension n×m) and 
p
K  (with dimension m×m) are 

the coefficient matrices related to local nonlinearity. When adopting the full Newton-Raphson iteration 

scheme, the matrices K′, 
p
K  and the number of IDOFs (i.e. m) should be updated in each iteration. For the 

local nonlinearity problem, the number of IDOFs (i.e. m) will be much smaller than the dimension of global 

stiffness matrix (i.e. m<<n) and the Woodbury formula can be employted to solve Eq. (3) efficiently: 
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                                                  (4) 

in which  

T 1

inf e

 K K K K  

In Eq. (4), the matrix ( )p inf
 K K  (with dimension mm) is the Schur complement of elastic stiffness matrrix 

Ke. Because the elastic stiffness matrix of global structure can keep unchanged during analysis, it only 

require to be factored once at the beginning of analysis. Thus, the main computational cost of Woodbury 

formula is invested in the factrization of the small dimension Schur complement matrix rather that the large 

dimension global tangent stiffness matrix of structure. Accoring to the above disscussion, it can be seen that 

the high efficiency of Woodbury formula in IS-FEM mainly stem from the local nonlinearity property of 

structure and the invariable characteristic of elastic stiffness matrix.  

3. Seismic response analysis method based on IS-FEM 

3.1. Equation of motion 

For the structure subjected to ground motion excitation, the incremental equation of motion can be expressed 

as follows: 

= gx     M X C X F M                                                                 (5) 

where M and C are the mass matrix and damping matrix respectively. In this study, the damping matrix is 

calculated based on the Rayleigh damping. Furthermore, in Eq. (5), the vectors X  and X  denote the 

vectors of relative acceleration and velocity increment, respectively; the vector ι is the influence coefficient 

vector;    1g g k g kx x t x t     represents the difference between the ground motion acceleration at steps k and 

k-1, and  
gx t  denote the ground motion acceleration time history. By substituting the first equation of Eq. 

(3) (i.e 
e pr

     K X K Ε F ) into Eq. (5), the inelasticity-separated equaiton of motion can be established as 

follows: 

=e g prx          M X C X K X M K Ε                                                           (6) 

It can be seen from Eq. (6) that the global stiffness matrix in the left side of the equation can remain elastic 

state and the effect of local nonlinear behavior is considered through the fictitious forces 
pr

 K Ε  appeared in 

the right side of the equaiton.  

3.2. Adaptive solution scheme 

By treating the term 
g prx     M K Ε  in the right side of the Eq. (6) as the extermal excitation applied to the 

elastic structure and introducing the Newmark average acceleration method for integration, the following 

equation can be established: 

=e pr
    K X F K Ε                                                                        (7) 

in which 
eK  and F  denote effective elastic stiffness matrix of structure and the effective incremental load 

vector respectively. The equations for calculating 
eK  and F  are as follows: 

 
2

2 4
=e e

t t

 

K K C + M                                                                    (8) 

   1 1

4
= 2 2g k kx t t

t
 

 
      

 
F M M C X MX                                               (9) 
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where t  denote the time interval for analysis;  1kt X  and  1kt X  are the vectors of relative acceleration 

and velocity of structure at step k-1 respectively. By integrating the Eq. (7) with the second equation of Eq. 

(3) (i.e T

p pr
     K X K Ε 0 ), the dynamic governing equation with the form of inelasticity-separation can 

be estblished as follows: 

T

e

prp

      
           

XK K F

- ΕK K 0
   (10) 

The Woodbury solution formula for dynamic problem can be obtained accordingly. 

 1 1 1 T 1( )e e p inf e

         X K K K K K K K F        (11) 

where 

T 1

inf e

 K K K K  

It can be seen from Eqs. (8) and (11) that the effective elastic stiffness matrix 
eK  and coefficient 

matrix 
infK  are related to time interval t . Thus, to achieve the high efficiency of the Woodbury formula 

(Eq. (11)) in each step, the time interval should be defined by a constant value. However, for the seismic 

response analysis focused on the study, the instantaneous intensity of the ground motion exciation is 

changing in real time and in most steps, the instantaneous intensity of the ground motion exciation will be in 

a relatively lower level. Fig. 2 present the schematic representation of a typical ground motion acceleration 

time history curve. It can be seen that the the large instantaneous ground motion intensity only occur in a 

very small time section. If the constant time interval is defined for seismic response analysis, a relatively 

small value of time interval that can guarantee iteration convergence in high intensity region should be 

seleted. In such case, although the high efficiency advantage of Woodbury formula can be achieved in each 

step, the computational cost of the whole analysis process may be huge because the use of small time interval 

may increase the number of incremental step greatly such that the IS-FEM is hard to be used for performing 

high efficient seismic response analysis.  

Fig. 2 Typical ground motion time history curve 

To improve the computational performance of the IS-FEM in seismic response analysis, an adaptive 

dynamic analysis strategy (ADAS) that can select the time interval adaptively during analysis on the premise 

of maintaining the high efficiency of Woodbury formula is proposed in this subsection. Firstly, at the 

beginning of analysis, several time intervals are predefined and the corresponding effective elastic stiffness 

are calculated. Assuming that there are c time intervals are predefined, the corresponding effective elastic 

stiffness can be calculated as follows: 
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(12) 

where t_1, t_2, …, t_c represent the predefinded time intervals and they follow the following relation: 

_1 _ 2 _t t t c      (13)

The effective elastic stiffness matrices calculated in Eq. (12) can be factorized before analysis. The 

factorized matrices can be used for the subsequent analysis. In this study, the LDLT method is adopted for 

factorization. Thus, there are 

 

 

 

T

_1 _1 _1_1

T

_ 2 _ 2 _ 2_ 2

T

_ _ __

e t t tt

e t t tt

e t c t c t ct c

  

  

  







K L D L

K L D L

K L D L

   (14) 

where _t iL  and _t iD  are the lower triangular matrix and diagonal matrix factorized from the i-th effective 

elastic stiffness matrix _( )e t iK (1 i c  ). Considering that in each iteraiton, the matrix infK in Woodbury 

formula can be obtained directly from the matrix INFK , which denote the matrix infK corresponding to the 

special case of nonlineariy occuring in whole domain of strucutrue [14], the matrix INFK  corresponding to 

various time intervals also can be calucluated before analysis: 

   

   

   

1
T

_1 _1

1
T

_ 2 _ 2

1
T

_ _

ˆ ˆ

ˆ ˆ

ˆ ˆ

INF et t

INF et t

INF et c t c



 



 



 

 

 

 

K K K K

K K K K

K K K K

       (15) 

where ˆ K  represent the matrix K′ correponding the case of global nonlineariy. 

Then, duing analysis, the appropriate time interval for a given incremental step can be determined 

adaptively according to the current nonlinear state of global structure, and the correponeding matrices 

calculated before analysis (i.e. the matrices obtained by Eqs. (14) and (15)) can be used directly to 

implement high efficent calculation of Woodbury formula. To achieve the idea of adaptive analysis 

presented above, a adaptive time interval selection scheme should be established. In this study, the number of 

iteration required for each incremental step is adopted as the indicator to select the appropriate time interval. 

Assuming that the time interval of k-th incremental step is ∆tk=∆t_i (1≤i≤c) and the number of iteration for 

convergence in this step is Niter,k, the time interval of the next incremental step (i.e. (k+1)-th incremental step) 

can be determined adaptively through the following conditional judgment statements.  

① If Niter,k ≤ N0, in which the value of N0 denote the threshold value of iteration number definded

before analysis, and max{Niter,k-u+1 , ... , Niter,k} ≤ N0, which means the iteraiton number of u continuous

steps are less than or equal to N0, then ∆tk+1=∆t_(i-1) (i should be greater than 1);
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② If Niter,k ≤ N0 and max{Niter,k-u+1 , ... , Niter,k} > N0, then  ∆tk+1=∆t_i; 

③ If N0<Niter,k<Nmax, in which the value of Nmax is the predefined maximum iteration number, then 

∆tk+1=∆t_(i+1) (i should be less than c); 

④ If Niter,k=Nmax, which indicates that the iteration is divergency in k-th incremental step, then the k-th 

step should be restarted by increasing the time interval (i.e. ∆tk=∆t_(i+1) where i should be less than c). 

It can be seen from the above presentation that the proposed ADAS should use three predefined 

parameters (i.e. N0, u, Nmax) and the value of N0 should be less than Nmax. For the threshold value N0, it is 

suggested that this value can be determined by the equation N0= Nmax/2. Fig. 3 presents the schematic 

flowchart of the proposed seismic response analysis method. It can be seen the the although the proposed 

method can increase the computational complexity of preprocessing process to some extent, the computation 

efficency of Woodbury formula in nonlinear analysis stage can maintain in a very high level. Because for a 

given structrual model the preprocessing process only require to perform once, the high effiecency advantage 

of the proposed method will become very significant when multiple earquake excitations and ground motion 

intensities are considered, such as incremental dynamic analyses.  

 

 

Fig. 3 Solution flowchart 

 

4. Numerical example 

An eight-story three-bay reinforced concrete frame structure shown in Fig. 4 is used to implement nonlinear 

seismic response analysis for illustrating the application of the proposed method. The structure was designed 

according to the Chinese code (GB 50011-2010) [16]. The beam and column members are modeled by the 
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inelasticity-separated fiber beam-column element developed by Li et al. [13] and each member is modeled 

by three elements. The beam column joints are simulated by the model proposed by Yu et al. [15]. The total 

number of nodal DOFs of the structural model is 1464. The fundamental period of the structure is 1.3 s. The 

ground motion record from the 1995 Kobe earthquake is selected as the excitation and the peak ground 

accelerations (PGAs) is scaled to 0.5 g. Three time intervals, which are ∆t_1=0.01, ∆t_2=0.001 and 

∆t_3=0.0001, was defined before analysis and the corresponding matrices required for Woodbury formula 

are calculated based on Eqs. (12), (14) and (15). The maximum iteration number Nmax and the threshold value 

N0 are taken as 10 and 5 respectively. Additionally, the improved Woodbury formula developed by Yu et al. 

[14] is adopted in the example for reduce the computational cost further. Fig. 5 shows the displacement 

history responses of the top floor. Fig. 6 shows the time interval with respect to the incremental step. It can 

be seen that the smaller time intervals are only used in minority steps and the total number of incremental 

step can maintain in a relatively small level. Thus, the proposed method can achieve the balance between the 

requirement of Woodbury formula for high efficient computation in each iteration and the high efficiency of 

whole seismic response analysis process.  

 

 

Fig. 4 Frame structure model 

 

 

Fig. 5 Displacement history response of top floor 
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Fig. 6 History of time interval 

 

5. Conclusion 

In this study, a novel seismic response analysis method is proposed based on IS-FEM. By decomposing the 

strain of nonlinear material into linear-elastic part and inelastic part and formulating the local nonlinearity 

behavior through inelasticity-separated manner, the IS-FEM can use the Woodbury formula to improve the 

computational efficiency significantly. To extend the IS-FEM for use in seismic response analysis, the 

Newmark method is adopted to establish the inelasticity-separated dynamic governing equation and the 

corresponding Woodbury solution formula. Because in the dynamic Woodbury formula, the effective elastic 

stiffness matrix and the coefficient matrix 
infK  are related to the value time interval and the requirement of 

Woodbury formula for high efficient calculation is that the updating of effective elastic stiffness matrix 

should be avoided, the time interval cannot change optionally during analysis. In such case, although the use 

of Woodbury can achieve high efficient computation in each step, the computational cost of the whole 

analysis process may be huge because a very small time interval generally should be adopted. To improve 

the computation performance of IS-FEM in dynamic analysis and reduce the computational cost further, an 

adaptive dynamic analysis strategy (ADAS) is proposed. The proposed ADAS should determine several time 

increments and calculate the corresponding coefficient matrixes required in Woodbury formula before 

analysis. Thus, appropriate time interval can be selected adaptively in each step according to the 

instantaneous inelastic state of global structure. Because the use the proposed ADAS allow for changing the 

time interval adaptively during analysis on the premise of maintaining the high efficiency advantage of 

Woodbury formula, it is helpful for improving the computational efficiency of whole analysis process. 
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