
17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

Paper N° C000263 

Registration Code: S-A00029

EARTHQUAKE GROUND MOTION MATCHING ON SHAKING TABLE 

USING REINFORCEMENT LEARNING CONTROLLER 

S. Larbi(1), N. Bourahla(2), Y. Bourahla(3), K. Choutri(4)

(1) PhD student, Civil Engineering Department, university of Saad Dahlab Blida1, Algeria, selma.h.larbi@univ-blida.dz
(2) Professor, Civil Engineering Department, Ecole Nationale Polytechnique, Algeria, nouredine.bourahla@g.enp.edu.dz
(3) PhD student, Informatics department, University of Sciences and Technology Houari Boumedien, Algeria,

bourahla.yasser@gmail.com
(4) Research assistant, Aeronautic department, University of Saad Dahlab Blida, Algeria, k.choutri@univ-blida.dz

Abstract 

Shaking tables are an essential tool in dynamic testing to analyse the nonlinear behaviour of structures, structural and 

non-structural elements, evaluate and predict their seismic responses to dynamic excitations similar to real earthquakes. 

A high fidelity in signal reproduction on the shaking table platforms, achieved by a robust control system, is therefore 

required. Many control techniques are developed and implemented in shaking tables to enhance their performance over 

a wide range of frequencies. Several controllers including linear, nonlinear, predictive, iterative and adaptive controllers 

are among others popular shaking tables controllers. However, the distortion between the original earthquake records 

and the reproduced signals is still problematic in shaking table tests. Recently, in contrast to conventional control 

methodologies, several Artificial Intelligence algorithms have proven to be more robust to learn nonlinear control laws. 

In this paper, the potential of a Reinforcement Learning (RL) approach to reduce signal distortion for an electric bi-axial 

shaking table is investigated through the application of a Q-learning algorithm. A numerical model of the shaking table 

system is developed in MATLAB/Simulink to simulate the environment in which the RL controller will interact and 

receives information about the system in form of a state signal. Then, the controller selects the action (command signal) 

from a discretized action space, to be applied to the shaking table with the main goal of maximizing the cumulative 

discounted reward. The action is defined as good if the error between the desired and the reproduced acceleration is 

remaining within the limits of the acceleration error tolerance and then the agent receives a positive reward. Otherwise, 

it receives a negative reward. The purpose of this control scheme is to develop an intelligent controller that learns, in 

long term, to select an appropriate action directly from the environment which is a shaking table system. The superior 

performance achieved by the RL controller is assessed in terms of  the root mean square (RMSE) error and mean square 

error (MSE) between the measured response and the desired signal after applying the optimal command signal for 

several simulations  using real earthquake records as acceleration input signals. The main benefit in practice of the RL 

controller over the classical controller is its continuing improvement (learning) with ongoing use of the testing on the 

shaking table.  
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1. Introduction 

Optimal control techniques are efficient alternatives to adapt controller’s parameters for dynamic systems, to 

deal with the system nonlinearities and to enhance the tuning process of the controller without causing 

system divergence or instability. A considerable research in adaptive control has been developed for shaking 

tables and has shown the important capabilities of the adaptive tuning of such complex systems [1-5]. 

However, these techniques generally depends on an accurate knowledge of the plant, which is hard to 

achieve in most cases. Moreover, the performance of the adaptive control approaches turn out to be 

inefficient when facing fast variations of the system characteristics [6]. In the last decades, the artificial 

intelligence (AI) algorithms have been combined to classic controllers to obtain different schemes of the 

adaptive self-tuning controllers. Particularly the fuzzy-PID [7, 8] and the NN-PID [9-12] are the most used 

hybrid control combinations. In fact, using learning paradigms to capture the system behaviour, in order to 

estimate the optimal controller’s gains, is widely used. Traditional AI techniques learn from labelled or 

unlabelled data examples. While, supervised learning maps between collected inputs and outputs with the 

objective of producing the correct output for data that does not exist in the training examples, the 

unsupervised learning deals with unlabelled data examples to find an inherent structure or hidden patterns 

from inputs only. The Reinforcement Learning (RL), however, which is the third class of machine learning, 

learns from an environment how to generate actions to achieve a task in an optimal way, relying on the main 

objective of maximizing rewards. Unlike conventional controllers, RL is model-free algorithm that does not 

require an accurate model of the system dynamics, which is a crucial advantage when the system is complex 

[13]. Also, the agent is learning by interacting directly with the environment, not from data as it is for the 

classical AI controllers. This main advantage makes the RL suitable in robotic [14-16] and autonomous 

system [17-19]. Despite of some feature similarities in terms of nonlinear complexity, application of modern 

computational AI techniques to control shaking tables is still lacking. Yet, few recent works [20-22] 

demonstrate the high performance achieved by the proposed intelligent controllers which appears promising 

in that regard. The continuing learning process as a key feature of RL algorithm to capture the nonlinear 

behaviour of complex systems with various disturbances and changing conditions is motivating at first stage 

to explore, numerically, the potential of a Q-learning algorithm in controlling a shaking table. Since the main 

challenge in shaking table control is to replicate faithfully the prescribed earthquake records, the task of the 

RL agent in this case is to provide an optimal discretized control signal (optimal actions), which minimizes 

the acceleration errors between the reproduced accelerations and the desired ones. An action get more reward 

when the error remains within the limits of the acceleration error tolerance. In the present paper, a numerical 

framework for control shaking table using a RL approach is presented in which the RL agent will learn 

through a simulated environment, represented by a modelled shaking table system. The RL agent receives 

the state signal through measured acceleration responses. A Q-learning algorithm is designed as a model-free 

RL control algorithm applied to the shaking table, performing offline and providing states-actions pairs in a 

form of a Q-matrix.  

The overall performance of the Q-learning controller is evaluated using the standard Root-Mean-

Square Errors (RMSE) as a performance index to assess the quality of the matching between the measured 

accelerations and targets. A comparative study between the PDFF controller and the proposed controller is 

carried out to demonstrate the advantages of the Q-learning algorithm over the traditional controller. 

 

2. Shaking table numerical model 

A numerical model of a shaking table is developed to simulate the behaviour of the environment in which the 

RL agent will interact. The advantage of applying a RL methodology is that the agent learns to perform a 

sequence of actions in an uncertain and complex environment, without the need of an accurate system model 

[23]. In this study, the environment is represented by a model of an electric linear motor bi-axial shaking 

table, composed of two moving stages: a bottom stage that moves along the horizontal x-axis, and a top stage 
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that moves along the transversal y-axis, as depicted in Fig.1. A simplified diagram of the shaking table 

system is illustrated in Fig.2.  

 

 

 

Fig. 1 – Experimental setup of the electric linear motor bi-axial shaking table 

 

Fig. 2 – Simplified diagram of the shaking table and the original PDFF controller 

 

 The original control system is a classic position PDFF controller represented in Fig.3, where Ad(s) is 

the desired acceleration, Xd(s) is the desired position, X(s) is the measured position, bsd is the set-point 

velocity weight, Iff(s) and Ipd(s) are the command signals provided by the FF and the PD controllers, 

respectively. 
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Fig. 3 – Schematic of the shaking table PDFF position controller  

The x-axis model of the shaking table can be represented by the transfer function expressed by the 

following equation: 

 X(s) = (1/Kf,x * s²)  Im,x (s) (1) 
 

Where X(s) = [x(t)] is the Laplace transform of the stage position, Im,x(s) is the Laplace transform of 

the applied motor current provided by the PDFF shaking table controller and Kf,x is the feedforward control 

gain along the x-axis.  

The original motor current Im(s) is expressed as follows: 

 Im (t) = Kp (xd(t) - x(t)) + Kd  (ẋd(t) - ẋ(t)) + Kf  (ẍd (t)-ẍ(t)) (2) 
 

The RL agent is aimed to replace the PDFF controller by providing the command signal directly to the 

shaking table system. The later will be implemented in the numerical model for comparison purposes only.  

3. RL control methodology  

The basic principle of RL is illustrated in Fig.4. Real earthquake records are simulated through the numerical 

model of the shaking table, to provide a quasi-continuous interaction loop between the RL agent (controller) 

and the environment. In the figure below, Ad,t represents the desired acceleration, Am,t represents the 

measured signal that constitute the state signal, Rt is the immediate reward. 

9e-0003 The 17th World Conference on Earthquake Engineering

© The 17th World Conference on Earthquake Engineering - 9e-0003 -



17th World Conference on Earthquake Engineering, 17WCEE 

Sendai, Japan - September 13th to 18th 2020 

  

5 

 

Fig. 4 – RL agent-environment interaction framework 

At each time step, the RL agent receives a feedback from the shaking table (environment) in form of 

an acceleration time history (state signal) and generates an action (command signal) chosen from a discrete 

actions space, constituted by all the possible taken actions. Immediately, the agent receives a single reward 

Rt. The goal of the agent is to maximize the total reward it receives for a long-term. The long-term quality of 

the chosen action is evaluated through an action-value function, which is the function to maximize. Value 

estimation has been the most important activity in most RL methods [24].   

Basically, the Q-function is obtained by experience, using an iterative process called Bellman 

equation, expressed in Eq. (3) and Eq. (4): 

 Q (s, a) =E [(Rt│St=S, at = a, π)] (3) 

 Q (st, at) ← Rt + α (r+ γ max Q (st+1, at) (4) 
 

The optimal Q-function Q*(s, a) is expressed as follows: 

 Q* (s, a) = maxπ Q(s, a) (5) 
 

Where γ is the discount factor, 0≤γ≤1. The discount factor takes into account the future rewards. 

 

4. Q-learning control algorithm 

The designed RL agent is aimed to replace the classic PDFF controller by providing the optimal command 

signal Im(s) sequentially to the shaking table based on the measured accelerations. The main objective of the 

intelligent RL controller is to minimize the error between the desired acceleration and the measured ones. An 

absolute error between the reproduced and the desired accelerations, less than 0.05g is judged to be 

reasonable [25], then the action is evaluated as good and the reward will be positive. Otherwise, the agent 

receives a negative reward. 

The expression of the immediate reward in the following equation: 

 (6) 

 

Thus, the discretized state-signal of the environment at each time step, can be expressed as: 

 St = {am,t }  (7) 
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The action-signal can be defined easily since the only parameter that can actively be set by the RL 

agent is the command current applied to the shaking table. For a given earthquake record, the current signal 

values are bounded between -10 and +10A. The discretization step was set to 0.01 based on a compromise 

between the accuracy in making decision and the computation time. 

 at = [-10A:0.01:10A] (8) 

The RL agent learns the best behaviour, based on an immediate reward (short term reward) that he 

receives, in order to maximize the long term reward. Given the nature of the task and the definition of the 

reward-signal, the highest possible reward equals +1, corresponds to a quasi-perfect matching between 

desired and output accelerations. 

Through this work, the implementation of a Q-learning algorithm has been chosen to be an interesting 

solution of the RL problem proposed in this study. The information about the interactions between the agent 

and the environment is stored in a so-called Q-Table. Having provided the definition of the state and action-

signals, the structure of the Q-Table is that of a 2-dimensional matrix given in Eq. (9). 

Q-table= [states ; actions] (9) 

The objective of the agent is to select the optimum action “a” having the highest value of Q(s, a). 

Initially, the Q(s, a) function values are initialized to zeros. After each iteration, the values are updated using 

the Bellman equation given in Eq. (4). The iterative process can be summarized as follows: 

- Initialize (𝑠, 𝑎) arbitrarily

- Repeat (for each episode) Initialize 𝑠
- Repeat (for each step of episode):

- Take action 𝑎 randomly, observe 𝑟 and 𝑠′

- Choose 𝑎′ from 𝑠′ with policy derived from 𝑄 (e.g. ε-greedy)

(𝑠, 𝑎) ← 𝑄(𝑠, 𝑎) + 𝛼 [𝑟 + 𝛾 max𝑠′ 𝑄(𝑠 ′ , 𝑎′) − 𝑄 (𝑠, 𝑎)]

𝑠 ← 𝑠 ′ ; 𝑎 ← 𝑎′

Until 𝑠 is terminal

5. Performance of the Q-learning control algorithm

This work focuses on improving shaking table control performance in term of reduction in the signal 

distortion affecting the quality of the reproduced signal at the base of the specimen tested. In order to verify 

the efficiency of the proposed control algorithm, numerical simulations of the shaking table was performed 

using several earthquake records such as El-Centro, Northridge and Cape-Mendocino.  The discount factor, 

the learning rate and ε are equal to 0.9, 0.7 and 0.9, respectively [14].   Fig.5 shows the cumulative rewards 

vs. episodes. It is visible that the controller reached a maximum cumulative rewards within almost 60 

episodes. After that, the value of the cumulative reward is increasing which means that the controller has 

achieved a stage of learning to choose the best possible action that produce the less error between the desired 

and the measured accelerations.  
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Fig. 5 – Reward graph showing the performance of the RL agent 

After applying the optimal command signal to the shaking table transfer function, the acceleration 

response is illustrated in Fig.6 revealing the enhanced tracking performance of the system. A comparative 

analysis between the two feedback signals obtained by the Q-learning controller and the traditional PDFF 

controllers is carried out. To evaluate quantitatively the improvement in the signal reproduction provided by 

the Q-learning, the Root-Mean-Square Error (RMSE) and the Mean Square Error (MSE) are used as indices 

assessment and their values are presented in Table 1. 

Table 1 – RMS values for the PDFF and the Q-learning controllers 

Earthquake record RMS (g) MSE (g) 

 PDFF 

controller 

Q-learning 

controller 

PDFF 

controller 

Q-learning 

controller 

El Centro 0.0237 0.0081 5.6 10-4 6.6 10-5 

Cape-Mendocino 0.0374 0.0402 0.0014 0.0016 

Northridge 0.0297 0.0257 8.82 10-4 6.73 10-5 

 

 

Despite the fact that the response accelerations are closer to the target with the Q-learning, this 

approach has the advantage of selecting appropriate actions through the direct interaction with the 

environment, based on the long term maximized reward, which makes the RL agent able to obtain similar 

results with any predefined signal to be reproduced.  
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Fig. 6 – Numerical replication of Northridge earthquake record with the Q-learning and PDFF controller 

 

6. Conclusion 

In this study, a numerical framework was proposed to investigate the potential of a novel control technique 

based on RL applied to shaking tables. It is shown that, from direct interaction with the simulated 

environment, the RL controller can learn to choose the optimal command values, based on the reward signal 

that it receives for each chosen action. The Q-learning algorithm was performed offline and the optimal 

actions obtained have been applied to the system producing a quasi-perfect replication of the desired signal. 

The superior performance achieved by the proposed RL control method over the traditional PDFF controller 

was evaluated through a direct comparison of the time-history replication of several earthquake records and 

two performance assessment indices: the Root-Mean-Square-Error (RMSE) and Mean-Square-Error (MSE). 

However, further issues are being addressed to demonstrate the robustness of the controller by introducing 

different nonlinear specimen and developing a natural extension from the obtained Q-matrix to a Deep Q-

Network (DQN) controller. The key feature of the RL controller is its continuing ability to (learn) improve 

with continuing use of the shaking table (environment). This will ultimately eliminate the signal matching 

phase at the beginning of shaking table tests. 
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