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Abstract 

Replaceable-component structures behave as conventional structures to resist lateral loads under minor earthquakes and 
require that the damage caused by strong earthquakes is only restricted in replaceable zones, whereas primary structural 
members remain intact. Consequently, damaged buildings can be resumed and normally operate within a very short time 
by only replacing damaged components which also play the role of passive energy-dissipation devices to dissipate input 
energy. The concept of replacement has been widely applied in beam-column joints of frames, as well as coupling beams 
of coupled structural walls. Apart from coupling beams which are the most vulnerable structural components, the bottom 
of a structural wall also easily incurs severe damage such as spalling or crushing of concrete, also buckling, yielding and 
fracture of longitudinal rebars. A straightforward problem-solving approach is to substitute replaceable components for 
brittle reinforced concrete parts at the bottom corners. Despite the achieved improvements, the design of replaceable 
components still relies on engineering intuition and a trial and error strategy to expect that replaceable components suffer 
from damage prior to the reinforced concrete region so that the remaining reinforced concrete parts are protected as far 
as possible. However, existing experimental results demonstrated that purely enlarging the section dimensions of 
structural members or simply adding auxiliary components still possibly leads to undesired local brittle failure. An 
inherent trade-off between the stiffness from replaceable components and that from reinforced concrete region is observed. 
Too strong replaceable components probably remain elastic and cause damage transfer to the reinforced concrete region, 
which violates the design goal of replaceable components. Conversely, too weak replaceable components have trivial 
contribution to the lateral resistance, thereby the lateral loads resisted by the reinforced concrete region is many times 
larger than that resisted by replaceable components. As a result, the reinforced concrete parts are prone to be damaged 
instead of replaceable components. 

In this study, the tough design problem is formulated into a minimization problem from the perspective of topology 
optimization that has been thriving from 1988 and extensively applied in manufacturing and architecture industries to 
enhance structural performance. The design goal is to suppress the maximum deformation in the reinforce concrete region, 
since severe deformation is a prerequisite for brittle failure of concrete. Addressing deformation in the form of strain 
tensor may lead to complicated systems and formulations. Instead, element strain energy as a scalar is used to quantify 
deformation intensity in each element. To avoid numerical instability, the aggregation method is utilized to approximate 
the maximum element strain energy. The objective function in the form of the aggregated value is minimized in the 
proposed optimization scheme which is driven by sensitivities of design variables in a gradient-based algorithm. In 
optimization process, an initial design consisting of intermediate elements gradually involves into the optimum design 
using solid elements to form the profile of replaceable components. Optimization results are presented to demonstrate the 
effectiveness of the proposed optimization scheme. Also, several factors that affect optimization results are investigated. 

Keywords: replaceable components; structural walls; earthquake resilience; topology optimization; finite element 
method 
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1. Introduction 

The collapse of building structures has been effectively controlled by conventional ductility design that had 
been attracting attention in the 1990s and 2000s to reduce the casualties in severe earthquakes. Since ductility 
design allows plasticity to develop in structural components, buildings inevitably suffer from residual 
deformation and damage with varying degrees when strong earthquakes hit cities. Yet, there hitherto are no 
well-defined guidelines for the assessment and estimation of residual deformation and plastic damage. It is 
very difficult to repair or estimate the capacity and safety of damaged building structures. To ensure safety, 
follow-up demolishment and reconstruction still cause huge economic loss. Resilient design [1] which targets 
this problem by emphasizing the restorability of structures is becoming a main-stream design philosophy. This 
concept derives two promising structural systems: self-centering structures and replaceable-component 
structures. Self-centering walls [2, 3], frames [4, 5] and piers [6] are capable of returning to their original 
positions with minor damage and negligible residual deformation. In this way, self-centering structures not 
only ensure safety, but also avoid temporary suspension of lifetime engineering [7]. Although advanced 
numerical models have been proposed by researchers [8, 9] to capture the self-centering behavior, it still needs 
a sophisticated design procedure [10] to stand the extraordinary seismic performance out. Unlike self-centering 
structures towards being free of damage, replaceable-component structures behave as conventional structures 
to resist lateral forces under minor earthquakes but require that the damage caused by strong earthquakes is 
only restricted in replaceable zones, whereas primary structural parts remain intact. Consequently, damaged 
buildings can be resumed and normally operate within a very short time by replacing damaged components 
which also play the role of passive energy-dissipation devices to dissipate input energy. 

The concept of replacement has been widely applied in beam-column joints of frames [11], as well as 
coupling beams of coupled structural walls [12, 13, 14]. Apart from coupling beams which are the most 
vulnerable structural components, the bottom of a structural wall also easily incurs sever damage such as 
spalling or crushing of concrete, also buckling, yielding and fracture of longitudinal rebars [15]. Indeed, other 
failure modes of reinforced concrete structural walls were observed from post-earthquake events’ 
reconnaissance [16, 17] or controlled experiments [18, 19]. However, the structural walls with a high aspect 
ratio in tall buildings are dominated by flexural behavior, provided the structural designs strictly follow 
existing criteria that require higher shear capacity in comparison with flexural capacity to avoid brittle failure. 
The flexural failure of structural walls observed in experiments [15, 16, 20] starts from horizontal cracks 
appearing at the bottom of the boundary parts, which is followed by the initial yielding of the longitudinal 
reinforcement near the pedestal. This phenomenon is also verified by numerical simulation results [21] in 
which the stresses in the compression boundary elements are about ten times greater than those in the panel. 

It is extremely hard to repair these damaged bottom corners in conventional structural walls, due to the 
material properties of concrete and steel bars. A straightforward problem-solving approach first proposed by 
Lu et al. [22] is to substitute replaceable components for original reinforced concrete parts at the bottom corners. 
It has been found that the replaceable components should be designed more reasonably, otherwise the stiffness 
of the tested structural wall decreased very fast after its drift exceeded 0.3%. Better seismic performance of 
structural walls in the literature [23] utilized steel struts to play the role of replaceable components at the 
bottom corners. Despite the achieved improvements, the design of replaceable components still relies on 
engineering intuition and a trial and error strategy. 

This paper attempts to investigate reasonable designs of replaceable components in structural walls from 
the perspective of topology optimization that has been thriving from 1988 [24] and extensively applied in 
manufacturing [25] and architecture industries [26] to enhance structural performance. The configuration of 
replaceable components is optimized to suppress the maximum deformation in the reinforced concrete region. 
The optimization process is driven by the sensitivities of design variables. In the topology optimization process, 
an initial design consisting of intermediate elements gradually involves into the optimum design where solid 
elements constitute the profile of replaceable components. 
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2. Strength balance in adding auxiliary components 

Attempts have been made to yield a desired failure mode in structural joints by adding auxiliary haunches [27, 
28, 29]. As shown in Fig. 1, the internal forces in beam-to-column assemblies are significantly altered by 
installing metallic haunches. The maximum moment is relocated away from the original critical sections to the 
position where haunches are connected to beams. Owing to this adjustment re-coordinating the stiffness 
relation between structural components, damage occurs at beams, but columns remain intact. Hence, brittle 
failure or yielding at beam-to-column joints or column members is avoided. 

However, damage and failure still relocate to other structural members. Difficulties in repairing these 
damaged structural members are prohibitive. Similar auxiliary haunches cannot be directly installed at the 
bottom of a reinforced concrete structural wall to play the role of replaceable components. It is because that 
resulting damage still possibly develops in the reinforced concrete region, whereas auxiliary haunches may 
remain elastic. It violates the design philosophy of replaceable components. Theoretically, replaceable 
components are expected to be damaged prior to structural members. 

Two aspects lead to this violation: the installed auxiliary haunches are too strong compared with other 
structural members on the one hand, the installed haunches cause stress concentration elsewhere on the other 
hand. For the first aspect, the opposite side, i.e. too weak auxiliary components, still could be problematic, 
since the fuse effect provided by auxiliary components becomes trivial. Hence, there is a complex trade-off 
when designing auxiliary components to satisfy the replaceable requirements. 

  

(a) (b) (c) 

Fig. 1 – Auxiliary haunches in beam-to-column joints and resulting failure modes: (a) [27]; (b) [28]; (c) [29]. 

3. Topology optimization 

3.1 Numerical models 

This section introduces the modelling scheme, which brings simplicity but captures essential physics. Fig. 2(a) 
visualized a conventional structural wall specimen in the literature [23]. The geometric dimensions of the 
numerical wall model are denoted as 𝐻 in height, 𝐵 in width and 𝑡ୡ in thickness. In following investigation, 
the variation of 𝐻 leads to different aspect ratios, whereas 𝐵 and 𝑡ୡ are fixed as 1200mm and 140mm, 
respectively. The vertical loads 𝑭 and lateral loads 𝑭 are uniformly applied along the top edge. The sum of 
lateral loads is 150kN, while the sum of vertical loads is determined according to the ratio of axial compression 
stress to strength 𝛿 which is defined by 𝛿 ൌ ∑ 𝑭 /ሺ𝑓ୡ𝑡ୡ𝐵ሻ. Herein, 𝑓ୡ = 26.8MPa is the design value of 
concrete compressive strength. The bottom edge is fully fixed. Considering symmetry and anti-symmetry, the 
original structure in Fig. 2(a) can be simplified as the half structure in Fig. 2(b) and (c) with symmetric loads 
and anti-symmetric loads. This simplification reduces computational cost in following finite element analysis 
and optimization. Note that boundary conditions should be consistent with applied loads in the half structure. 
The numerical model used for optimization consists of passive domain Ω and active domain Ω as illustrated 
in Fig. 2(b). The passive domain represents the half structure of a structural wall, whereas the active domain 
is the background to yield potential configurations of replaceable components. The geometric dimensions of 
the active domain are denoted as 𝐻 in height, 𝐵 = 1200mm in width and 𝑡ୱ = 8mm in thickness. 
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Fig. 2 – Schematics of numerical modes. 

The Young’s modulus and Poisson’s ratio for the passive domain are 𝐸ୡ = 33GPa and 𝜇ୡ = 0.23, and 
those for the active domain are 𝐸ୱ = 200GPa and 𝜇ୱ = 0.30. Only deformation in the controlled deformation 
zone Θ is concerned and controlled in optimization process, since the bottom region suffers from severer 
deformation. The entire design domain is uniformly discretized by square bilinear in-plane stress elements 
with an element length of 15mm. Structural response under applied loads is solved under small deformation 
assumption. The corresponding static equilibrium follows 

𝑲𝑼 ൌ 𝑭,        𝑲𝑼 ൌ 𝑭 

𝑼 ൌ 𝑼  𝑼,                 𝑲 ൌ 𝑲ୡ  𝑲ୱ 

𝑲ୡ ൌ  𝑲ୡ,

∈ஐౌ

,               𝑲ୱ ൌ  𝑲ୱ,

∈ஐఽ

 

𝑲ୱ, ൌ 𝑡ୱ න 𝑩
 𝑫ୱ,𝑩



d𝐴 ൌ 𝐸ୱ,𝑡ୱ𝑲ഥ  

𝑲ୡ, ൌ 𝑡ୡ න 𝑩
 𝑫ୡ,𝑩



d𝐴 ൌ 𝐸ୡ𝑡ୡ𝑲ഥ  

𝑲ഥ  ൌ න 𝑩
 𝑫ഥ𝑩



d𝐴 

(1)

where 𝑲ୡ and 𝑲ୱ represent the stiffness matrices originating from the passive domain and the active domain, 
respectively; 𝑼 is the displacement vector corresponding to 𝑭  𝑭; 𝑫ഥ  is the normalized element constitutive 
matrix; 𝑩 is the linear strain-displacement transformation matrix c.f. Table 6.5 in [30]; 𝐸ୱ, is the Young’s 
modulus of elements in the active domain and should be determined according to the following interpolation 
scheme; 𝐴 is the in-plane area of element e. 

3.2 Interpretation scheme 

A “density-based topology optimization approach”, which followed [24, 31] and became an efficient form [32, 
33], is employed to turn a 0-1 distribution problem into a continuous distribution problem. A design variable 
𝜌 ∈ ሾ0,1ሿ is assigned to each element. The material Young’s modulus 𝐸ୱ, for each element can be directly 
related to the projected physical density �̅�  according to the modified Solid Isotropic Material with 
Penalization (SIMP) approach [34] as 

𝐸ୱ, ൌ 𝐸ୱ,୫୧୬  �̅�
൫𝐸ୱ െ 𝐸ୱ,୫୧୬൯ (2)
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where 𝑞  0 is the penalty parameter ( 𝑞 = 3 in this study); 𝐸ୱ,୫୧୬ = 10-9𝐸ୱ is a very small value and assigned 
to void elements (�̅� = 0) in order to prevent global stiffness matrix from becoming singular; �̅� is the projected 
physical density [35] calculated by 

�̅� ൌ
tanhሺ𝛽𝜂ሻ  tanh൫𝛽ሺ𝜌 െ 𝜂ሻ൯

tanhሺ𝛽𝜂ሻ  tanh൫𝛽ሺ1 െ 𝜂ሻ൯
 (3)

where 𝜂 and 𝛽 control the shape of Eq. (3) by gradually increasing 𝛽 during the optimization process; 𝜌 is 
the filtered density of element e, which is calculated as 

𝜌 ൌ
1

∑ 𝐻,∈

൫𝜌𝐻,൯
∈

 (4)

where 𝑛 is the set of element 𝑖 for which the center-to-center distance ∆ሺ𝑒, 𝑖ሻ to element 𝑒 is smaller than the 
filter radius 𝑟୫୧୬, and 𝐻, is a weight factor defined as 𝐻, ൌ max൫0, 𝑟୫୧୬ െ ∆ሺ𝑒, 𝑖ሻ൯. Herein, 𝑟୫୧୬ spans a 
length of 5 elements. Due to the modified SIMP scheme, 𝑲ୱ, in Eq. (1) is readily connected to design variables. 
In contrast, the interpolation of element volume is based on a linear form, i.e. 𝑉 ൌ �̅�𝑉,, where 𝑉, is the 
volume of element e in a solid state. 

3.3 Formulation  

Strain energy is used as a straightforward quantity to measure element deformation. Similar strategy can also 
be found in previous researches [36, 37]. As a scaler, strain energy is independent of directions, and therefore 
complexity caused by handling strain tensor is avoided. The original objective is to minimize the maximum 
element strain energy in the deformation controlled zone. However, the mathematically flawless min-max form 
causes trouble for a gradient-based optimizer in a numerical process, because the min-max form is not 
differentiable. To overcome this problem, the maximum element strain energy 𝛤୫ୟ୶ is approximated by an 
aggregation function in this study. Usually, the p-norm and Kreisselmeier-Steinhauser (KS) functions [38, 39] 
are available for aggregation. Without loss of generality, the p-norm function is used as 

𝛤୫ୟ୶ ൌ maxሺ𝛤|𝑒 ∈ Θሻ ൎ 𝑔 ൌ ൭ 𝛤


∈

൱

ሺଵ/ሻ

 

𝛤 ൌ 𝑼𝑲𝑼 ൌ ሺ𝑼  𝑼ሻ𝑲ሺ𝑼  𝑼ሻ ൌ 𝑼
 𝑲𝑼  𝑼

𝑲𝑼  2𝑼
 𝑲𝑼 

(5)

where 𝛤 is the element strain energy of element e; 𝑝 is the aggregation parameter that controls the performance 
of Eq. (5). When 𝑝 → ∞ , 𝑔  approaches 𝛤୫ୟ୶ . A good choice for 𝑝  should therefore balance adequate 
smoothness and an appropriate approximation of 𝛤୫ୟ୶. A very large value of 𝑝 requires more iteration steps to 
converge and brings in more oscillations in the objective value. Experimentally, 𝑝 = 8 can yield good results 
in this study. In summary, the optimization problem can be formulated as 

min
𝝆

ሺ𝑔ሻ 

s. t.    𝑲𝑼 ൌ 𝑭 

𝑲𝑼 ൌ 𝑭 

1
𝑉୰ୟ

ቆ
∑ 𝑉

∑ 𝑉,
ቇ െ 1  0, 0  𝜌  1, 𝑗 ∈ Ω 

(6)

where 𝑉୰ୟ ∈ ሺ0, 1ሻ  is the volume fraction. Structural displacements 𝑼  is calculated in an external finite 
element step using a nested approach. 

3.4 Sensitivity analysis 

Taking the derivative of 𝑔 with respect to a design variable 𝜌 yields the terms including the derivative of 𝑼 
and 𝑼 with respect to 𝜌. The adjoint method, see [40] for a review, is employed to avoid directly solving 
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d𝑼/d𝜌 and d𝑼/d𝜌 in order to save computational cost. Thus, 𝑔 is augmented into �̅� with the multiplier 
vectors 𝝀ଵ

 and 𝝀ଶ
 as 

�̅� ൌ ൭ 𝛤


∈

൱

ሺଵ/ሻ

 𝝀ଵ
ሺ𝑭 െ 𝑲𝑼ሻ  𝝀ଶ

ሺ𝑭 െ 𝑲𝑼ሻ  (7)

According to the chain rule, the derivative of 𝑔 with respect to 𝜌 is given by 

d𝑔
d𝜌

ൌ  ൬
d𝑔
d�̅�

d�̅�

d𝜌

d𝜌

d𝜌
൰

∈

  (8)

where d𝑔/d�̅� is expressed as below, according to the derivation in Appendix. 

d𝑔
d�̅�

ൌ െ𝝀ଵ
 d𝑲

d𝜌
𝑼 െ 𝝀ଶ

 d𝑲
d𝜌

𝑼 
(9)

where 𝝀ଵ and 𝝀ଶ can be calculated through solving the following adjoint equations 

𝑲𝝀ଵ ൌ 2  ൬
d𝑔
d𝛤

𝑲൰
∈

൩ 𝑼, 𝑲𝝀ଶ ൌ 2  ൬
d𝑔
d𝛤

𝑲൰
∈

൩ 𝑼  (10)

Note that boundary conditions should be consistent with those in Fig. 2(b) and (c) when solving 𝝀ଵ and 𝝀ଶ in 
Eq. (10), respectively. Therefore, 𝝀ଵ ് 𝝀ଶ. 

4. Optimization results 

4.1 Deformation controlled zone and volume fraction 

The ratio of axial compression stress to strength 𝛿, which is also called ‘axial compression ratio’, and the 
demension in height 𝐻  are fixed as 0.2 and 3.6m, respectively, to invetigate the effect of deformation 
controlled zone Θ and volume fraction 𝑉୰ୟ in optimization process. The element strain energy contour of a 
reference half-structure in a conventional configuration is shown in Fig. 3. Obviously, the severest deformation 
locates the wall toe. The Young’s modulus and thickness in the passive domain are different from those in the 
active domain. As a result, directly visualizing element strain energy from the two domians cannot present a 
clear intuion of deformation intensity. To fairly display deformation intensity and distribtion, element strain 
energy is nomralized by element thickness and Young’s modulus as 𝛤෨  = 𝛤/ሺ𝑡ୡ𝐸ୡሻ  for 𝑒 ∈ Ω  and 𝛤෨  = 
𝛤/ሺ𝑡ୱ𝐸ୱሻ for 𝑒 ∈ Ω. Also, ga൴n rat൴o 𝜉 ൴s def൴ned as 𝜉 = ሺ𝛤୫ୟ୶,୰ୣ െ 𝛤୫ୟ୶ሻ/𝛤୫ୟ୶,୰ୣ to quantify the benifit 
of optimization. 

 

Fig. 3 – Element strain energy contour of a reference half-structure (unit for the color bar is [Nꞏmm]) 
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The variation of deformation controlled zone is manipulated via a index 𝛾 = 𝐻/𝐻. Deformation controlled 
zone shown in Fig. 2(d) has a noticeable effect on optimized results, as well as volume fraction 𝑉୰ୟ referred 
in Eq. (6) according to the optimized results in Table 1. Optimized results converge to different configrations 
under 𝛾 = 0.25, 0.50 and 0.75. When 𝛾 = 0.25, severe deformation concentrates at the top conatct points 
between replaceable components and structural walls. Ga൴n rat൴o is nonlinearly proportional to the allowable 
area of replaceable components according to the tendency depicted in Fig. 4. In the case of 𝛾 = 0.25, gain 
ratio decreases, though consuming more material. Observations from numerical tests indicate that 
optimizations under 𝛾 = 0.75 yield better results. The objective value in Fig. 5 descends as iteration number 
increases. The gain ratio histroy, the red line in Fig. 5, experiences a shape rise and then ascends slowly before 
weak oscillations. The trends of the objective value and gain raio conincide with each other. It demostrates 
that the p-norm function adequately approximates the maximum element strain energy 𝛤୫ୟ୶ in a deformation 
controlled zone and the suggested optimization scheme performs well. 

Table 1 – Optimized results from varying deformation controlled zone and volume fraction 

Optimized 
configuration 

& 
𝜞෩𝒆 

 
𝜸𝚯, 𝜹𝐍 0.75, 0.20 

𝑽𝐟𝐫𝐚 0.025 0.050 0.075 
𝜞𝐦𝐚𝐱  335 267 223 

𝝃𝒈  0.63 0.71 0.75 

Optimized 
configuration 

& 
𝜞෩𝒆 

 
𝜸𝚯, 𝜹𝐍  0.50, 0.20 

𝑽𝐟𝐫𝐚 0.025 0.050 0.075 
𝜞𝐦𝐚𝐱  335 267 266 

𝝃𝒈  0.63 0.71 0.71 

Optimized 
configuration 

& 
𝜞෩𝒆 

  

𝜸𝚯, 𝜹𝐍  0.25, 0.20 
𝑽𝐟𝐫𝐚  0.025 0.050 0.075 
𝜞𝐦𝐚𝐱  490 585 605 

𝝃𝒈  0.46 0.36 0.33 
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Fig. 4 – Tendency of gain ratio with respect to volume fraction 

 

Fig. 5 – Histories of objective value and gain ratio in a optimization process 

4.2 Axial compression ratio and aspect ratio 

The effect of axial compression ratio 𝜹 on optimization results is investigated by varying from 0.0 to 0.5 at 
an interval of 0.1 on the one hand, and the optimization results also show a great dispartiy under different 
aspect ratios on the other hand, see details in Table 2. To yield reasonable results, deformation controlled zone 
is invarient as 𝛾 = 0.75. The allowable in-plane area for replaceable components is set as 0.108m2. Different 
aspect ratios are achieved in numerical tests by changing the geometry dimension in height at 1.2m, 2.4m and 
3,6m. 

In all cases, the gain ratios are larger than 0.4. It means that deformation intensity in the passive domain 
is significantly reduced by adding optimized replaceable components. Also, the deformation intensity in the 
optimized replaceable components is higher than that in the passive domain representing a reinfored concres 
structral wall. However, this effect is gradually reduced as axial compression ratio increases. The optimization 
efficacy is diluted by axial loads. Axial compression ratio also shapes the optimized configurations. 

The effect of aspect ratio also affects geometries of replaceable components. In the case of aspect ratio 
equal to 3 (𝐻ௐ = 3.6m and 𝐵ௐ = 1.2m), optimized components are similar to narrow and long wedges. The 
optimization efficacy is more pronounced in a situation where aspect ratio is close to 1. Fortunately, this decay 
shows a stable tendency. Overall, optimizatio allocates more material at the bottom section. The obtained 
configurations of replaceable components follow the conception of haunches in beam-to-column joints but the 
optimized geometries successfully balacne the stiffness contribution from the passive domain and the active 
domian to minimize the maximum element strain energy in deformation controlled zone. 
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Table 2 – Optimized results from varying axial compression ratio and aspect ratio 

𝑯𝐖 
= 

1.2
(m) 

Optimized 
configuration 

   

𝜞෩𝒆 

   
𝜹𝐍 0.0 0.1 0.2 0.3 0.4 0.5 

𝜞𝐦𝐚𝐱,𝐫𝐞𝐟 71 160 283 441 634 861 
𝜞𝐦𝐚𝐱 17 48 96 180 311 479 

𝝃𝒈 0.76 0.70 0.66 0.59 0.51 0.44 

𝑯𝐖 
= 

2.4
(m) 

Optimized 
configuration 

   

𝜞෩𝒆 

   
𝜹𝐍 0.0 0.1 0.2 0.3 0.4 0.5 

𝜞𝐦𝐚𝐱,𝐫𝐞𝐟 229 373 552 766 1015 1299 
𝜞𝐦𝐚𝐱 66 121 192 284 391 514 

𝝃𝒈 0.71 0.68 0.65 0.63 0.62 0.60 

𝑯𝐖 
= 

3.6
(m) 

Optimized 
configuration 

   

𝜞෩𝒆 

   
𝜹𝐍 0.0 0.1 0.2 0.3 0.4 0.5 

𝜞𝐦𝐚𝐱,𝐫𝐞𝐟 475 674 909 1179 1483 1823 
𝜞𝐦𝐚𝐱 156 237 335 453 586 737 

𝝃𝒈 0.67 0.65 0.63 0.62 0.60 0.60 
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5. Conclusions 

A topology optimization scheme is proposed in this study to design replaceable components in structural walls. 
The maximum element strain energy in a numerical structural wall model can be considerablely decreased by 
40 to 60 percent compared with conventional structural walls in the range of aspect ratio from 1 to 3. The 
replaceable component deforms more severely than the structural wall in the presented optimization results. 
The optimized configurations of replaceable components have concise shapes and like haunches in beam-to-
column joints. Consequently, it never causes complexity in manufacuring. 

Deformation controlled zone should be reasonablely set in optimization, otherwise optimization results 
would still suffer from concentrated deformation. Both axial compression ratio and aspect ratio affect the 
optimized configurations of replaceable components. According to the parameter study, gain ratio decays when 
axial compression ratio ascends. Gain ratio also decreases as aspect raio increases. 
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Appendix 

The derivative of element strain energy 𝛤 with respect to a design variable 𝜌 is calculated as below 

d𝛤
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𝑼  (11)

Taking derivative of �̅� in Eq. (7) with respect to a design variable 𝜌 yields  
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(12)

In order to eliminate the term containing the implicit derivative of displacements, namely d𝑼/d𝜌  and 
d𝑼/d𝜌, the adjoint equation, Eq.(10), should be solved. Also, note that d𝑭/d𝜌 ൌ 𝟎 and d𝑭/d𝜌 ൌ 𝟎, 
and d𝑲/d𝜌 ൌ 𝟎 for 𝑒 ∈ Θ. Thus, d𝑔/d𝜌 is obtained as Eq. (9). 
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