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EXTENSION OF SEISMIC ZONATION MAPS FOR DESIGN AT ANY
PRESELECTED FAILURE PROBABILITY

A H HADJIAN1

SUMMARY

A general methodology is presented that could be used to select seismic load factors to the
NEHRP 1997 mapped values to achieve any pre-selected target failure probability.  A simple
algebraic expression is derived that estimates the median resistance, R50.  Given the statistics of the
resistance (mean, COV, mean to nominal ratio), the median resistance is adjusted to obtain the
nominal code design capacity, Rn.  Results are tabulated for selected parameters

INTRODUCTION

Performance-based design requires, among other constraints, that failure probabilities be commensurate with the
consequences of failure.  Failure is defined herein as the condition beyond any pre-specified limit state.  The
motivation for this work stems from the rather ad hoc manner used in the NEHRP 1997 Provisions to specify
performance-based requirements.  A simplified procedure is developed that would allow the use of the NEHRP
1997 national maps to achieve any preselected failure probability.  Given the confines of this paper, the main
thrust is on the conceptual elements of the process rather than the development of hard numerical criteria.

FAILURE PROBABILITY

Earthquake failure probability can be calculated from Eq. 1 [Kennedy and Short, 1994]

da f(a) H(a)  = P
    

o

F ∫
∞

(1)

where the median seismic hazard curve, H(a), is the complimentary Cumulative Distribution Function (CDF) of
the ground motion parameter under consideration, and f(a) is the Probability Density Function (PDF) of the
conditional failure probability of the system (usually referred to as the fragility), given that load level a occurs.
For the purposes of this paper, the peak ground acceleration a will be used as the ground motion parameter.

Assuming a lognormally distributed fragility curve with median F50 and variance ζ2, Eq. 1 can be written as

da e 
2 a

1
 H(a)  = P 2

2

50

2

)
F

a
 (ln

-

    

o

F ζ
πζ∫

∞

(2)

 Defining M = ln F50 and x = ln a (a = ex and da = ex dx) and appropriately changing the limits of the integration,
Eq. 2 can be written as
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To perform the closed-form integration of Eq. 3, Kennedy and Short (1994) approximate the hazard curve by

aK = H HK
a

−
1 (4)

where K1 is a constant and KH is a slope parameter defined by 
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, wherein AR is the ratio of

ground

motions corresponding to a ten-fold reduction in exceedance probability.  Substituting Eq. 4 into Eq. 3 results in
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Performing the above integration, the failure probability is obtained as
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Defining HD as the annual frequency of exceedance of the median Design Basis Earthquake (DBE) ground
motion level, and substituting Eq. 4 into Eq.  6, gives the final expression for PF [Kennedy and Short, 1994]:
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Eq. 8 gives a second characterization of H(a).

nba = H(a) log (8)

where b and n are constants.  The objective of an analytical representation of the hazard curve is to facilitate the
numerical integration of Eq. 2 for several H(a).  Figure 1 shows a family of hazard curves based on Eq. 8 in two
sets. The full line hazard Curves 1, 2 and 3 are considered to be representative of high seismicity hazard curves,
and the dashed hazard Curves, 4, 5 and 6 are considered to be representative of low seismicity hazard curves.
The bolded dot-dashed hazard curves A and B are the High and Low Seismicity Curves A and B, respectively, of
Fig. 2-1 of Kennedy and Short (1994).  The match of Hazard Curves 2 and 5 with A and B is adequate.  The b
and n values for all six hazard curves are listed in Table l (together with their AR and KH values calculated at
HD=10- 4).   Figure 2 is a plot of AR calculated at the midpoint of the decade for all six hazard curves of Fig. 1 as
a function of HD.  The wide range spanned by Curves 1 and 3, and Curves 4 and 6 would qualify these sets of
curves as a reasonable basis for a generalized solution.

Comparison of Results - Equations 4 and 8

Before proceeding any further it would be useful to compare the failure probabilities obtained from Eq. 2 for the
two characterizations of H(a), Eqs. 4 and 8.  Figure 3 shows an example for ζ=0.4 and the following constants,
using Hazard Curve 2 of Fig. 1 as the basis of the comparison:

2.0 = 
DBE

F
 0.582, = F 2.78, = K  2.29, = A 0.291, = DBE ,10 = H    a) HR

3-
D

50
50

0.582 = F  4.96,- = b  0.406, = n    b) 50



18113

Table 1:  Characteristics of the six hazard curves of figure 1

High Seismicity Low Seismicity

1 2 3 4 5 6

b -6.28 -4.96 -4.22 -6.78 -5.81 -5.06

HD n 0.429 0.406 0.384 0.343 0.333 0.321

10-4 AR 1.80 1.86 1.92 2.08 2.13 2.19

10-4 KH 3.93 3.72 3.52 3.15 3.05 2.94

The three curves shown in Fig. 3 are the hazard (dashed line), the fragility (dotted line), and the product of the
two parameters (full line).  The area under the product curve is the failure probability, PF.  The main difference
in the two results shown in Fig. 3 is the curvature of the hazard curves (dashed lines).  The hazard curve in Figs.
3a is the actual (in log-log plot), whereas that in Fig. 3b is a linear replacement of, Hazard Curve 2 of Fig. 1.
The resulting failure probabilities (area under the product curve - full line) are given below (Cases a and b):

Case ζζζζ= 0.2 ζζζζ= 0.4 Comments

a Equations 2 & 8 1.34 x 10-4 2.38 x 10-4

b Equation 5 1.70 x 10-4 2.70 x 10-4 AR at vicinity of HD

c Equation 5 1.30 x 10-4 2.45 x 10-4 AR below HD

As is to be expected from Fig. 3b, Eq.  5 will always result in a larger PF because the concavity of the true hazard
curve is lost and hence the product with the fragility PDF will always be larger than its counterpart in Fig. 3a.
Another observation in Fig. 3 is the fact that the product curve is very similar to the fragility curve and hence the
contribution of the hazard curve to PF outside of a fragility band, say at 1% of its peak value is, therefore,
minimal.

The KH value used in the above examples is calculated at the vicinity of H(a) = 10-3, from the AR for the decade
from 10-3.5 to 10-2.5.  If the decade from 10-4 to 10-3 were used, AR would equal 2.03 instead of 2.29 and KH would
equal

3.25 instead of 2.78.  Thus, for ζ = 0.4, from Eq.  7, 102.45x = 
2

e
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 instead of 2.70 x 10-4,

and PF would equal 1.30 x 10-4 for ζ = 0.2 instead of 1.70 x 10-4.  As compared in the above table (Case c), these
results are closer to those obtained directly by use of Eqs. 2 and 8 (Case a).  Although the choice of AR

calculation at the vicinity of HD makes conceptual sense (in that KH is analogous to the slope of the hazard
curve), it seems that the errors due to the linearization of the hazard curve and the calculation of AR from below
HD counterbalance each other to produce the above encouraging results.  Therefore, in the remaining, AR are
calculated from below HD.

USE OF NEHRP 1997 MAPS

The NEHRP 1977 maps are for the recurrence of ground motion parameters that would occur with a 2%
probability in 50 years.  Assuming a Poisson process for the occurrence of peak ground motion parameters, this
translates to about a mean return period of 2500 years.  From Fig. 2 and Table 1, the AR below HD (HD = 1/2500
= 4 x 10-4) is approximately estimated for the decade from 10-4.5 to 10-3.5 (or equivalently at the vicinity of HD =
10-4).  From Eq. 7, the Failure Return Period (FRP =1/PF) is expressed as
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where the Design Factor (DF) is defined as DF50 = F50/DBE.  DF is analogous to load factors used in load and

resistance factor design.  Figure 4 is a plot of the FRP for all six hazard curves and for several ζ, when HD = 4 x
10-4.

The following are the significant parameters affecting FRP, in decreasing order of importance:

(a)  ζ.  The impact of ζ for the range of 0.2 - 0.6 is dramatic.  ζ is the more dominant parameter than KH

in relation to FRP and DF50 .  Adequately determined ζ is important in failure probability estimations.

(b)  The significance of High (Hazard Curves 1, 2, 3) and Low (Hazard Curves 4, 5, 6) Seismicity
becomes a concern at RFPs greater than about 10,000 years (PF = 10-4).  For structures designed to
building codes, such as IBC 2000, a failure probability PF =2x10-4 could be considered as the lower
bound of interest.

(c)  The differences in PF are minor within both the high and low seismicity group hazard curves.
Based on this observation, in the following analyses Hazard Curves 2 and 5 will be used as
representative curves for High and Low seismicities, respectively.

Figure 5 shows the above curves (for Hazard Curves 2 and 5 only) on semi-log plot.  Figure 5 can be used as a
design tool by entering the ordinate at a target FRP (= 1/PF) and reading off the associated DF50 for any
applicable ζ.  The F50 of the required fragility curve then is simply the product of the DF50 with the NEHRP 1997
mapped value.

Considering observation (b) above, it would seem possible to draw a conservative envelope on the lower side of
the curves of Fig. 5 for each ζ such that the variability due to AR (i.e. High and Low Seismicity) is eliminated.  It
is noted that the dependence on seismicity is not strong below FRP of 10,000 years.  It would thus be possible to
establish a conservative envelope that can be used generically.  For the range of FRP from 500 to 10,000 years,
the following simple expression provides a good prediction of these envelopes:

FRP  0.34 = DF 0.270.7ζ50 (10)

FROM FAILURE PROBABILITY TO RESISTANCE  (P F→→→→ R)

Having determined DF50, one can then obtain the required fragility curve (in terms of F50 = DF50.DBE and ζ) and
determine the required design resistance, R.  It is important to note that the fragility curves, with ζ and F50

parameters, incorporate the median values and variances of the resistance as well as all applicable loads.  ζ is a
parameter that covers many sins.  But primarily it is a measure of the considerable uncertainty in the hazard
curves, as well as the quality in analysis, design and construction.  The variance of the fragility curve can be

obtained from ζζζ 2

S

2

R

2  +  = , where ζ 2

R  and ζ 2

S  are the variances of the resistance and loads, respectively. ζ 2

S

could represent either the variability in the hazard curve and the analysis model, or the variability of all
concurrently acting loads, such as seismic, dead and live loads.  Thus, different fragility curves would be
obtained when the loading is due only to the seismically induced load or when the loading is due to all
concurrent loads.

Assuming initially that the fragility curve is due to seismically induced loads only, e.g. when the earthquake

lateral loads are resisted primarily by shear walls, ζζζ 2

E

2

R

2  +  = .  Depending on the quality of construction and

the limit state of interest, ζR could potentially vary from 0.1 - 0.15.  Determining ζE is more of a challenge, and
beyond the scope of this paper.  Conservatism introduced in response analyses is an important issue but cannot
be treated herein due to space limitations.  Therefore, it is explicitly assumed that the response analysis provides
best estimate results and ζE reflects both hazard and model variabilities.
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Resistance, R

The next step is to translate F50 into a resistance-related parameter.  The conditional failure probability FP/a (any

one point on the fragility curve) is calculated by the convolution of a load, S a
50  (for each sequentially selected

a), and applicable resistance distribution function.  When the ratio 
50

50

R

S a

 is small, the failure probability would be

small.

As aS50  is increased and becomes equal to R50, then ln (R50 /S50)  = ln 1 = 0 and hence the conditional failure

probability is 0.50 (irrespective of ζ).  In other words, at F50, the median load and median resistance are equal,
and R50  F50.  The median resistance is thus given by

) all (forDBE  . DF = R ζ5050 (11)

This step transfers the problem of determining the resistance from fragility space into resistance space.  Any

further manipulation of results should consider only the variance of the resistance, i.e. ζ 2

R , and not ζ 2
of the

fragility curve.

Design is usually performed with �nominal� values of loads and resistances.  Designating the ratio of the mean

resistance, R , to the nominal resistance, Rn, as R/R =N nR , and noting that for the lognormal distribution the

mean and median are related by  
COV + 1

x
 =x

x

250  (COV = Coefficient of Variation), Eq. 11 can be re-

written for Rn as
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Given the confines of this paper, and as mentioned earlier, only seismic loads are considered.  The design
equation in code format is E  = R 50En αφ  (a load combination similar to D1.4 = R nn

φ ) where αE is the

sought for design load factor on the median seismic load.  We will continue to characterize the DBE as the
specific median value from the hazard curve rather than a �nominal� seismic load.  From Eq. 12, the seismic
load factor becomes

 DF 
N

COV+1 
 =

R

R

E 50

2

.
φ

α (13)

Example

Given that ζR  COVR = 0.13, φ = 0.90, NR = 1.12 (all for reinforced concrete flexure), and ζE = 0.38, calculate
the load factor αE for PF = 10-3 or FRP = 1000 years.

,0.4 = 13
2

0. + 38
2

0. = ζ and, from Fig. 5 (Curve 5 controls), DF50 = 1.08, and hence

0.87 = 1.08 x 
1.12

13
2

0.+1 0.9
= Eα .

When αE =2/3, as in the NEHRP 1997 provisions, DF50=0.823 and from Fig. 5 (for ζ=0.4) FRP=400 years for
High, and FRP=700 years for Low hazard seismicities.
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Design codes specify different φ for different actions.  The ACI code, for example, specifies φ = 0.9 for flexure
and 0.6 for shear in high seismic regions.  In addition to reflecting a larger COV (0.20 vs 0.13), the smaller φ for
shear more importantly reflects the design profession’s intent to make seismically induced shear failure
significantly less likely .  Thus, it may be prudent not to meddle with currently used φ values and to normalize αE

with the largest φ (i.e. 0.9), as in the above example.  The expected relative reliabilities for other φ (actions)
would thus be maintained.

Design Conservatism in R n

Lognormal distribution of the resistance is characterized by the median capacity R50 and its variance.  Given the
general expression of the distribution, the resistance can be equivalently characterized by any other resistance
probability RP through the following relationship:

e = 
R

R
RP X-P ζ

50

(14)

where XP is the associated standard deviation of the cumulative standardized normal distribution. Thus, the
inherent conservatism introduced in design codes, in addition to the explicit load factors, can be quantified.  For

the above example 50R/Rn equals 0.9, and thus Xp, when ζ=0.13, equals 0.81, and the exceedance probability is

21%.

SUMMARY RESULTS AND CONCLUSIONS

A simple yet viable procedure is presented to calculate the seismic load factor, αE (no other concurrent load is
considered herein), to the NEHRP 1997 mapped values, leading to the estimation of the required nominal
resistance, Rn, for any specified failure probability.  Based on this procedure, Table 2 provides load factors
(normalized to reinforced concrete flexure) for several failure return periods.  From a designer’s perspective the
data indicates that αE is ζ sensitive.  The determination of ζ thus becomes an important design consideration.

Table  2: DF50 (from Eq.  10) and ααααE for selected Failure Return Periods

ζ=0.3 ζ=0.4 ζ=0.5 ζ=0.6

FRP (yr) DF50 αE DF50 αE DF50 αE DF50 αE

500

1000

2000

5000

0.78

0.95

1.14

1.46

0.6

0.8

0.9

1.2

0.96

1.16

1.39

1.79

0.8

0.9

1.1

1.5

1.12

1.35

1.65

2.09

0.9

1.1

1.3

1.7

1.27

1.54

1.85

2.37

1.0

1.3

1.5

1.9

Table 3 shows results from a reverse process.  It lists estimates of failure return periods for three Importance
Factors and incorporates the 2/3 (αE?) factor of the NEHRP 1997 provisions applied to the Maximum
Considered Earthquake.  It is interesting to note that for all ζ the failure return periods approximately double as
the I factor is increased to 1.25 and 1.5.  It should be noted that FRPs could increase, particularly for low
seismicities, when dead and live load effects are considered (acting concurrently, as in moment resisting frames)

since significant reserve resistance (1.4Dn) would then be available.  For this class of structures, 5050 /ED  is a

critical parameter.
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Table 3: Failure Return Periods (nearest 100 yrs) for selected Importance Factors (DF50 from Eq.  9)

I Factor ζζζζ=0.2 ζζζζ=0.3 ζζζζ=0.4 ζζζζ=0.5 ζζζζ=0.6

1.0

1.25

1.5

900

2100

3900

600

1500

2900

400

900

1800

200

500

1000

100

200

500
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Figure 4: Failure Return Period vs DF50 for High and Low seismicities and several ζζζζ

Figure 3:  comparison of the two characterizations of hazard curves, equations 8 and  4


