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SUMMARY

A method for evaluating the deformation capacity of exterior columns subjected to cyclic lateral
loading and a varying axial load is presented in this paper. This deformation capacity is
determined by two criteria. One is defined by the strain softening of concrete, and the other is
defined by the hysteretic characteristics of concrete, as well as the deformation capacity under a
constant axial load which has been formulated in the authors’s previous paper. Using the
formulated deformation capacity under a constant axial load, the one under a varying axial load
can be evaluated by the maximum axial stress ratio, while the other under a varying axial load can
be evaluated by the equivalent axial stress ratio, which was introduced to take consideration of the
effect of the loading pass of the varying axial load. The smaller one gives the deformation capacity
of exterior columns. The proposed deformation capacity has good agreement with the
experimental results.

INTRODUCTION

Exterior reinforced concrete columns of buildings are subjected to cyclic lateral loading and a varying axial load
during earthquakes, and typically fail due to the crush of concrete after flexural yielding. The variation of the
axial load, as well as characteristics of the stress-strain relationship of confined concrete in the columns, has a
great influence on the deformation capacity of such exterior columns. However, in the previous investigations on
the evaluation of the ductility of columns under a varying axial load, the maximum and minimum values in the
varying axial load have mainly received attention, and the effect of the loading pass between the maximum and
the minimum axial load on the ductility has not been sufficiently considered. This paper presents a method for
evaluating the deformation capacity of exterior columns, taking consideration of the effects of the loading pass
and the characteristics of confined concrete. This method can be easily applied to the design of exterior columns.

As for the deformation capacity of columns that fail due to the crush of concrete, the authors have proposed the
following two critical conditions [Hiraishi et al., 1993]. Criterion 1 is defined by the strain softening of concrete
under monotonically increasing loading. Criterion 2 is defined by the hysteretic characteristics of concrete under
cyclic loading. Structural design charts and equations for the deformation capacity of columns under a constant
axial load have been proposed [Inai and Hiraishi, 1996]. Using the proposed design equations, the deformation
capacity under a constant axial load can be evaluated by the axial stress ratio, which is the ratio of axial stress in
the column section to the compressive strength of confined concrete. These criteria are also applied to columns
under a varying axial load in this paper. The deformation capacity determined by Criterion 1 under a variable
axial load is formulated, using the maximum axial stress ratio in the varying axial load. The deformation
capacity determined by the Criterion 2 under a varying axial load is formulated, using the equivalent axial stress
ratio. This equivalent axial stress ratio is expressed in the form of a linear combination of the following three
axial stress ratios: the maximum axial stress ratio, the minimum axial stress ratio and the axial stress ratio at the
zero deformation, corresponding to the loading pass of the varying axial load. The adequacy of the proposed
equivalent axial stress ratio is verified by the analytical moment-curvature relationships of a reinforced concrete
section subjected to curvature reversals and a varying axial load. The deformation capacity of exterior columns is
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given by the smaller one determined by the two criteria. The proposed deformation capacity is compared with
the experimental results, and good agreement was obtained.

DEFORMATION CAPACITY UNDER CONSTANT AXIAL LOAD

The authors have investigated and formulated the deformation capacity of columns subjected to lateral loading
and a constant axial load. The following two mechanical characteristics of concrete are considered to determine
the deformation capacity: 1) the strain softening in the stress-strain relationship of concrete, 2) hysteretic
characteristics of concrete in the large strain stage. The strain softening of concrete typically causes a moment
reduction after the ultimate moment, and finally collapse of the column, under the monotonically increasing
lateral loading [Hiraishi and Inai, 1990a and Hiraishi et al., 1990b]. On the other hand, the hysteretic
characteristics of concrete cause a successive deterioration in moment resistance and axial shortening of the
column under the cyclic lateral loading and a high axial load [Inai and Hiraishi, 1992]. The deformation
capacities defined by these two factors has been derived as shown in Fig. 3, considering an equally reinforced
core section shown in Fig. 1 and the idealized stress-strain relationship of core concrete shown in Fig. 2 [Hiraishi
et al., 1993]. In Figs. 1-3, D’ and b’ are depth and width of core section, respectively, fc’ is the compressive
strength of confined concrete, ε B is the strain at the compressive strength, α  is a parameter representing the
slope of descending branch of the stress-strain relationship of concrete, N is an axial load, η  is the axial stress

ratio and is equal to N/(b’D’fc’), φ SL is the critical curvature defined by the strain softening of concrete, and

φ CY is the critical curvature defined by the hysteretic characteristics of concrete. For columns subjected to cyclic

lateral loading and a constant axial load, the smaller critical curvature gives the actual deformation capacity.
There is a tendency that the η -φ CY relationships give the deformation capacity in case of a high axial stress

ratio. Fig. 4 gives the adequacy of one of the η -φ CY relationships, where four pairs of analytical moment-

curvature relationships of concrete core section (218x218mm) with the same curvature amplitude and a different
axial stress ratio are shown. The axial stress ratios in Case (a) - (d) are a little greater than the η -φ CY

relationship with α =0.1, while those in Case (e) - (h) are a little smaller. The moment-curvature relationships in
Case (a) - (d) show a deterioration in moment resistance under cyclic loading, while those in Case (e) - (h) show
very stable behavior. The adequacy of the η -φ SL relationships has been examined using experimental results

[Inai and Hiraishi, 1992].

Furthermore, the following simplified design equations for the deformation capacities of the columns under a
constant axial load have been proposed, based on the above critical curvatures and a relationship of R=φ D’,

where R is the drift angel of the column [Inai and Hiraishi, 1996].
The critical drift angle of columns defined by the strain softening of concrete, Ru:
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Ru = −( ) /1 24η   for Ru ≤ 1/34,  Ru = −( ) /1 2 14η   for  1/34 < Ru ≤  0.06                (1)

The critical drift angle of columns defined by the hysteretic behavior of concrete, Ru:
Ru = −( ) /1 2 14η   for  Ru  ≤  0.06                                                     (2)

Fig. 5 gives relationships between these equations and the experimental deformation capacities. Eq. (2) gives a
lower-boundary of the experimental deformation capacities of the specimens subjected to cyclic lateral loading
and a constant axial load. Eq. (1) gives a lower-boundary of the experimental deformation capacities of the
specimens subjected to monotonically increasing lateral loading and a constant axial load, or cyclic lateral
loading and a varying axial load. In Fig. 5, the experimental deformation capacity is the drift angle where the
moment resistance, including the P-delta moment, reduces to 95% of the ultimate moment. The maximum
compressive axial stress ratio is applied as the value of η  in case of the specimens under a varying axial load.

The reason for this will be discussed in the following section.
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DEFORMATION CAPACITY UNDER VARYING AXIAL LOAD

In this section, exterior columns of the buildings with a weak-beam strong-column system are considered. The
deformation capacity of columns under a varying axial load is defined by the same two factors as the case under
a constant axial load.

Deformation Capacity Defined by Strain Softening of Concrete

The earthquake-induced axial load of the exterior columns becomes constant after the hinges at the beam-ends
are fully developed. Therefore, the deformation capacity defined by the strain softening of concrete may occur
under the maximum compressive axial load, and is easily obtained from applying the maximum axial stress ratio,
η MAX, to the η -φ SL relationships in Fig. 3, or Eq. (1).

DEFORMATION CAPACITY DEFINED BY HYSTERETIC CHARACTERISTICS OF CONCRETE

The deformation capacity defined by the hysteretic characteristics of concrete can be obtained from the
following procedure, as well as the case under a constant axial load.
1) Consider an equally reinforced core section, shown in Fig. 1, subjected to curvature reversals with a certain

amplitude and a varying axial load, where stress of concrete follows the idealized stress-strain relationship
shown in Fig. 2 and the axial load is assumed to be sustained by concrete only.

2) Determine the stresses and strains in the section at the peak curvatures in the positive and negative loading
directions corresponding to a given curvature amplitude and axial loads.

3) Examine the axial load carrying capacity of the section at the zero curvature after the inelastic regions have
developed in both sectional edges at the positive and negative peak curvatures, assuming that the axial strain
of the section at the zero curvature reaches the elastic limit of concrete.

4) The relationship between the axial loads at the three deformational stages and the curvature amplitude gives
the deformation capacity defined by the hysteretic characteristics of concrete.

However, the derivation of the deformation capacity requires a very complicate process under various varying
axial loads and curvature amplitude. Therefore, an alternative method is applied in the following consideration.

Fig. 6 illustrates the strain and stress distributions in the core section at the three deformational stages: the
positive and negative peak curvatures and the zero curvature. The stress distributions are simplified as follows:
a) At the positive and negative peak curvatures, stresses in the region where the strain is in the elastic range are

assumed to be zero, while all stresses in the region where the strain is in inelastic range are assumed to be
the compressive strength, fc’.
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b) At the zero curvature, stresses in the region that has experienced the inelastic strain at the peak curvatures
are assumed to be zero.

The strain of the section at the zero curvature reaches the elastic limit of concrete at the deformation capacity.
On the basis of these simplifications, the following equation comes into existence at the deformation capacity,
and is valid for any curvature amplitude and varying axial load.

1)()( 0,, =+−++ ηηηηη nepe cc                                                   (3)

where, η c=Nc/(b’D’fc’); η e,p=Ne,p/(b’D’fc’); η e,n=Ne,n/(b’D’fc’) for η e,n<η c, η e,n=η c for η e,n >η c;

η o=No/(b’D’fc’); Nc is the long-term axial load, and positive for compression; Ne,p is the earthquake-induced

axial load at the positive peak deformation, and positive for compression; Ne,n is the earthquake-induced axial
load at the negative peak deformation, and positive for tension; No is the axial load at the zero deformation,
assumed to be compression, and positive for compression. (η c+η e,p) and (η c-η e,p) usually express the

maximum and the minimum axial stress ratio, respectively.

In case that η e,p=η e,n=0 and η c=η o=η * in Eq. (3), Eq. (3) expresses the critical condition under a constant

axial load, and becomes 3η *=1. From equalizing Eq. (3) and 3η *=1, the following equation is obtained.

3/)2(* 0,, ηηηηη +−+= nepec                                                    (4)

The η * in Eq. (4) expresses the axial stress ratio to be considered in case that the critical condition under a

varying axial load is represented by the critical condition under a constant axial load, and is referred as the
equivalent axial stress ratio.

The earthquake-induced axial load of the exterior columns is generally determined by the restoring-force
characteristics of the beams in the buildings. In the following consideration, the curvature in the critical section
of the exterior column is assumed to be in proportion to the deformation of the beams, and the earthquake-
induced axial load given by the beams as illustrated in Fig. 7 is used. In this case, the earthquake- induced axial
load at the zero deformation of the exterior column becomes nearly Ne,p/2. Therefore, by substituting
(η c+η e,p /2) into η o in Eq. (4), the equivalent axial stress ratio is expresses as follows:
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3/2/* ,, nepec ηηηη −+=                                                           (5)

In order to verify the adequacy of the equivalent axial stress ratio, η *, in Eq. (5), the analyses of cyclic moment-

curvature relationships of a reinforced concrete section shown in Fig. 8 under a varying axial load were
conducted. The sectional dimension and the used stress-strain relationship of core concrete are the same as those
in the analyses under a constant axial load shown in Fig. 4. However, reinforcing bars are considered in the
section because a tensile axial load is applied to the section in this analysis. The bi-linear model is used to
represent the stress-strain relationship of the reinforcing bars. Two pairs of the analytical moment-curvature
relationships with the same curvature amplitude and a different equivalent axial stress ratio are shown in Fig. 9.
The loading histories of axial load in each analysis are shown in Fig. 10. The equivalent axial stress ratios given
by Eq. (5) in Case (1) and (2) are a little greater than the η -φ CY relationship under the constant axial load, and

are the almost same as those in Case (b) and (c) in Fig. 4, respectively. The equivalent axial stress ratios in Case
(3) and (4) are a little smaller than the η -φ CY relationship, and are the almost same as those in Case (f) and (g)

in Fig. 4, respectively. A successive deterioration in moment resistance due to the hysteretic characteristics of
concrete is observed in the positive loading direction in Case (1) and (2), while the behavior of Case (3) and (4)
are stable under four curvature reversals. Therefore, the deformation capacity defined by the hysteretic
characteristics of concrete under a varying axial load can be obtained from applying the proposed equivalent
axial stress ratio, η * , to the η -φ CY relationships in Fig. 3, or Eq. (2).

Deformation Capacity of Exterior Columns and Comparison with Experimental Results

The deformation capacities defined by the strain softening and the hysteretic characteristics of concrete under a
varying axial load can be evaluated by the maximum axial stress ratio and the equivalent axial stress ratio,
respectively. The smaller one gives the deformation capacity of exterior columns subjected to cyclic lateral
lading and a varying axial load. Fig. 11 shows one of the effects of the loading pass on the deformation capacity
of exterior columns, using the sectional analyses of the reinforced concrete section shown in Fig. 8. The
moment-curvature relationship in Fig.11 (a) was obtained under the condition that the axial load varied
proportionally to the moment of the section up to the maximum or minimum axial load. On the other hand, the
moment-curvature relationship in Fig. 11 (b) was obtained under the loading pass described in the previous
section. The maximum and minimum axial loads and the curvature amplitude are identical in the both cases. The
analytical moment-curvature relationship in Fig. 11 (b) shows a successive deterioration in moment resistance
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due to the hysteretic characteristics of concrete, while that in Fig. 11 (a) shows no deterioration. This is because
the section was subjected to the high axial load only around the peak curvature in the positive loading direction
in the case of Fig. 11 (a). Most of experimental deformation capacities under a varying axial load shown in Fig. 5
were derived from the specimens subjected to the varying axial load in proportion to the moment as shown in
Fig. 11 (a). It is indicated that the strain softening of concrete rather than the hysteretic characteristics of concrete
determined these experimental deformation capacities. Therefore, Eq. (1) with the maximum axial stress ratio
gives a good lower-boundary of the experimental deformation capacities under cyclic lateral loading and a
varying axial load, as well as those under a monotonically increasing lateral loading and a constant axial load.

CONCLUSIONS

The following conclusions can be drawn from this study.
1) The deformation capacity of exterior columns is determined by two criteria. One is defined by the strain

softening of concrete. The other is defined by the hysteretic characteristics of concrete. The smaller one gives
the deformation capacity of exterior columns.

2) The deformation capacity defined by the strain softening of concrete under a varying axial load can be
evaluated by the maximum axial stress ratio, using the η -φ SL relationships in Fig. 3 or Eq. (1).

3) The deformation capacity defined by the hysteretic characteristics of concrete under a varying axial load can
be evaluated by the equivalent axial stress ratio given by Eq. (5), using the η -φ CY relationships in Fig. 3 or

Eq. (2).
4) The proposed deformation capacity has good agreement with the experimental data.
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