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DISPLACEMENT-BASED SEISMIC DESIGN OF
STATICALLY-INDETERMINATE BRIDGE PIERS

SilviaMAZZONI* and Gregory L FENVES

SUMMARY

The development and i mpl ementati on of a desi gn methodol ogy to estimate structural capacitiesand
demands in seismic design is presented herein. In the methodol ogy, the deformation capacity of a
prototype structureisdetermined fromanonlinear push-over analysis and the di splacement demand
is calculated from a linear-el astic analysis of a model of the structure. The stiffness and damping
characteristics of the linearized model are chosento represent the inel astic behavior of the structure
at a prescribed limit state. The methodol ogy gives the linearized properties directly from the force-
deformation behavior determined from the push-over analysis to the limit state. The methodol ogy
isunique because it give local effective stiffnesses associated with the plastic hinge zones. Because
the plastic hinge zones have different levels of inel astic response, different stiffness parameters are
assigned to the different regions of the nonlinear members. The linearized damping ratio is
calculated from the limit-state displacement ductility level. The procedure is implemented for the
analysis and design of two-column bridge piers with a flexible cap beam, loaded in the transverse
direction of the bridge (in the plane of the pier). The results of this study show that a consistent
li neari zati on procedure, whi chtakesinto account the stiffness and energy-di ssi pati on characteristics
of the structural components locally, can be used for a displacement-based design procedure for
bridges.

INTRODUCTION

The development and i mplementati on of a design methodol ogy to estimate structural capacities and demandsin
seismic designispresented herein. For design purposes, the simplified methodol ogy uses stati ¢ push-over analyses
and elastic dynamic analyses. Nonlinear stiffness reduction and hysteretic energy dissipation (damping) are the
primary dynamic characteristics considered in the model.

Current procedures using push-over analysis are typically able to characteri ze the | ateral -deformati on capacities
and | ateral-load strengths of structural systems accurately. Available simplified analysis tool s used to cal culate the
force and deformation demands, however, are limited in their ability to capture the dynamic characteristics of a
nonlinear-inel astic prototype in alinear-elastic analysis model.

Because local strains and deformations are considered to be the best indicators of damage, displacement-based
design, where member deformation demands and capacities are the primary design parameters, was used as the
framework for the proposed procedure. Here, the deformati on capacities cal culated from a nonlinear static push-
over analysis are compared to the deformati on demands cal culated from a linear-el astic dynamic analysis.

The proposed procedure wasi mpl emented i n the desi gnand eval uati on of atwo-col umnrei nforced-concrete bridge
bent subjected to vertical gravity loads distributed al ong the beam | ength and horizontal seismic ground excitation
in the plane of the frame. The bent is shown in Figure 1and Figure 2. What is particul ar to the seismic response
of bridge structures is that the structural members are designed to have plastic hinges forming at the column ends
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rather than in the beams, asistypical in building design. The primary consequence of this design method is that
the i nteracti on between the column axial load and flexural strength and stiffness becomesimportant i n the design
process. For statically indeterminate systems, the interaction precludes cal cul ating the lateral load strength and
deformation capacity directly and independently.

PROPOSED PROCEDURE

I nthe proposed procedurethe | ateral - deformati on capacity and demand of astructure subj ected to the design gravity
and seismic loads are calculated and compared. The procedure consists of three phases: the capacity-eval uation
phase, the linearization phase, and the demand-eval uation phase. In the capacity-eval uation phase, the structure
is subjected to a nonlinear static push-over analysis. The limit-state lateral deflection, together with the local
element |oads and deformati ons, are obtai ned fromthis analysis. In the lineari zati on phase, a linear-el astic model
of the prototype structure is developed from the results of the push-over analysis. The linearized stiffness and
damping characteristics are determined in this phase. In the demand-eval uation phase, the linearized model is
subj ected to the desi gnloads and the | ateral -defl ection demand is cal cul ated from allinear-el astic dynamic analysis.

CAPACITY EVALUATION PHASE

A nonlinear static push-over analysisis performed on the structure to determine itsinternal 1oad and deformation
characteristics. The cal cul ated | ateral -defl ecti on capacity will be compared to the demand cal culated i nthe analysis
phase to eval uate the design.

In the static push-over analysis, the portal frame is subjected to simultaneous gravity |oads and an incremental
lateral deflection at the deck level. The lateral resisting force at the base is determined from a state determination
and equilibriumat each defl ectionincrement. The anal ysi sistermi nated when the prescribed limit stateisreached.
At the limit state, a state determination is performed to determine the internal loads and deformations of each
structural component. These element |oadsand deformati ons are used to cal cul ate the li neari zati on parameters and
to determine local demands once the global -response criteria have been satisfied.

Bilinearization of Push-Over Curve

The nonlinear lateral |oad-deformation response of the prototype structure can be represented by a bilinear
approxi mation, asshownin Figure 3. The bilinear approxi mati on has three defi ning characteristics. () Theinitial
stiffness, K, (b) the maximum load and deformation, F, and D,, respectively and (c) the second stiffness, K.

Theinitial elastic stiffnessiscal culated from alinear-elastic analysis where the flexural stiffness of the members,
El., is defined by the ratio of bending moment and the curvature at first yield, M, and f,, respectively. Firstyield
for the circular-column el ements i s defined as the point where the col umn longitudinal rei nforcement first yields
in tension, with the dead-load axial force.

The maximum load and deformation at the limit state, F, and D, respectively, in the bilinear approximation are
equal to those of the nonlinear curve. The second stiffness, K,, is calculated by equating the strain energy in the
nonlinear curve to that in the bilinear approximation, as shownin Figure 4:

v - 2BAK 2K W, - F; "
2
82K, - 2W,

where the nonlinear work, W,, can be cal culated from integrating the piece-wise-linear force-deformation curve
to the limit-state deformation.

Definition of Yield & Ductility

Thelatera load, F,, and |ateral deformation, D, at yield are defined by the i ntersection of the two stiffnessesinthe
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bilinear approximation of the push-over response curve:

_ F,-K,A, I AR
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Theyield and limit-state deformetions are used to defined the limit-state displacement ductility, ny:
A

Ba = A_u (3]

y

LINEARIZATION PHASE

In the linearization procedure alinear-€l astic model whose dynamic characteristics are representative of those of
the nonlinear structure at the limit state is created. The equival ent dynamic characteristics are defined so that the
maxi mum|oad and deformati ondemandsinthe linear-€l astic model arethe same asthoseinthe nonlinear-inel astic
structure.

The nonlinear stiffness reduction and hysteretic energy dissipation characterize the dynamic response of the
prototype structure. It isimportant that the lineari zati on procedure model s these two characteristics accurately. To
represent the stiffness reducti on, the secart stiffnessto the limit state istaken as the effective stiffness of the linear-
elastic model. The effective viscous damper in the linear-elastic model represents the combined effects of both the
viscous damper and the hystereti c-energy dissipation of the prototype structure.

Linearized Stiffness

The devel opment of the proposed procedure is based on the assumption that the structural elements are flexural
elements, where only flexural -bending deformati ons are considered in the modeling. Hence, element stiffnessis
represented in terms of the section moment of inertia, |. The section moment of inertiais typically characterized
in terms of bending-moment and curvature response. Modeling difficulties arise in a yielding system where the
nonlinear response of the structural materials results in a reduction in flexural stiffness, El, with increasing
deformation. Where E isthe modul us of the material. The modeling of this stiffness reducti on when the structure
reaches its limit state is the basis of the proposed linearization procedure.

To simplify the analysis procedure, e ements that are designed to remain el astic during the response are assumed
to remain elastic, asisthe casefor the beam in the bridge bent. The flexural stiffness typically used for these elastic
elements isthe cracked-section stiffness, |, defined equal to the yield moment divided by the yield curvature and
elastic modul us. These quantities can be cal cul ated froma section analysis. Because thi s stiffness remai ns constant
for any leve of deformati onand isdefined a priori, the sel ection of this stiffnessis|eft to the choice of the designer.

The proposed procedure takes into account the variation of damage in the different structural components by
performing a step-by-step static pushrover analysis. This step-by-step procedure allows monitoring of all element
sections usi ng cal culated moment-curvature rel ationshi ps at the element-section level and follows the sequence of
hinge formation. The damage indices for the individual structural elements are determined from the push-over
analysis rather than assumed a priori and, hence, are particul ar to each structural element.

In addition, the proposed procedure takes i nto account the di stri buti on of deformati onal ongthe nonlinear structural
elements and is able to account for the deformation localization by assigning different stiffness parameters to
different regions of the structural elements. The columns in the portal frame considered herein, for example, are
subjected to double bending. Based on these boundary conditions, plastic hinges are expected to from at both
column ends.

To calculate the lineari zed-model stiffness characteristics, the element forces (bending moment, shear and axial
forces) and nodal deformations (translations and rotations) are extracted fromthe results of the push-over analysis
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at the limit state. These forces and deformations are showninFigure 5. The linearized model at the limit state is
shown in Figure 6. At the limit state, the element forces are the same in the linearized model as those in the
nonlinear prototype. To mai ntai n proper modeling of stiffness distribution, the joint transl ations and rotations are
alsoequal. The difference betweenthe two structural systemsliesin the distributi on of stiffness al ongthe nonlinear
elements. In the prototype structure, the curvature distribution obeys a nonlinear moment-curvature rel ationship.
The resulting curvature along the nonlinear column element is shownin Figure 5.

Onthe other hand, each columninthelinearized model has three segmental | y-conti nuous linear-el asti ¢ stiffnesses.
The stiffness distribution, and the resulting curvature distribution is shown in Figure 6. Joint rotation and
trangl ati on i mpose the two compatibility equations for each nonlinear element necessary to cal cul ate the two end-
stiffness parameters, la and Ib, shown in Figure 6. The linearized stiffness of the central element, lo, is assumed
constant and equal to the cracked moment of inertia when the column is subjected to the gravity axial force alone
and is calculated a priori.

The stiffness parameter of each nonlinear element is calculated fromits internal forces and deformations. The
following equati ons for the nodal transl ati on, D, and the nodal rotation, Q, shownin Figure 6 are used to determine
the stiffness parameters for each column:

1 BL =26, )M, + 25, M, 1B, |617-6Lb,+ 25|, + (262 + 315 M,

AL SL 2 Eﬁb 3 6L El, "
11 (—BLbb +2b2+2b) + L3 - 3Lbj)Mb + (—2b,f+ 213 +6Lba2—2b;—6L2ba)Mq
6L El,
1 bb (2L - bb)Mb + bea i li (ZL _ba)Ma + baMb
o . 2L EI, 2L El, 5
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Where L isthe I ength of the element and M, and M, are the end moments, as shownin the figure. Solving for the
stiffness parameters:

B - AI-B2 - A2-BI B, - AI-B2 - A2-BI -2, g
-B3-Al + ©-AI - A-BI + BI-A3 B3:A2 - ©-A2+ A-B2 - B2-A3 ¢, T

Where:
15
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BI = Efb(ZL—bb)Mb + byM,|
b
B2 = Lodor b1, + b, 8
B3 = 11 (L_bb_bu>[¢_bb+ba)'Mb+ (L+bb_ba)'Ma]
2L EI,

Thelength of the end segments, b, and b,,, are additional parameters cal culated fromthe bendi ng moment diagram.
The length of these segments is equal to the [ ength over whi ch the bendi ng moment exceeds the yield moment for
the section subjected to the dead-load axial force. Based on the graphics of Figure 6, the lengths of the end
segments:

M,-M M, -M
b = 4 vy b, = b Tvg [9]
“ M, + M, M+ M,

The sign convention used in the above expressions is consistent with Figure 5 and Figure 6.
Linearized Damping

The viscous-damping force in the linearized model accounts for the non-conservative forces in the nonlinear
prototype: the hysteretic restoring force and the viscous-damping force. The effective damping ratio proposed in
this paper was obtained by determining the damping ratio necessary to yield the same maxi mum demand in the
linear-el astic systemasinthe nonlinear prototype structure. The response of the nonlinear prototype structure was
obtai ned using a nonlinear finite-element analysis program. The input ground motions were selected and scal ed
so that the maxi mum demand in the nonlinear prototype was equal to the limit-state deformation obtained in the
push-over analysis. The limit state chosen for the implementation procedure was the ultimate limit state,
corresponding to the limiting curvature when the extreme compression fiber in the concrete core reaches a strain
equal to the maximum strain capacity of the confined concrete. The nonlinear analysis included both the | ateral
input motion and the gravity load distributed along the beam element. The study was performed using eight
unscal ed time histories and thirteen frames. An average effective damping ratio was cal culated for each frame.

From the results of the study, the linearized dampi ng ratio proposed here isafunction of the characteristics of the
linearized push-over curve:

1 1-
Ceﬁ:;[l‘\/u_j‘“ uA] + g, [10]

The displacement-ductility factor, n,, is defined above and the stiffness ratio a is equal to the ratio of the second
stiffness to the initial stiffness, as derived above and shownin Figure 3:

o= = [11]

Z, isthe viscous-damping ratio of the nonlinear system. This relationship was obtai ned by equati ng the one-cycle
hystereti c energy froman anal yti cal force-deformationmodel for reinforced concrete to the one-cycle energy of the
effective viscous damper. The Takeda force-deformetion response model was used for the hysteretic modeling.

The above expression for the effective damping rati o was devel oped for structures whose lineari zed natural period
ranged between 1.0 and 3.2 seconds. The displacement-ductility range was between 2 and 6.2.
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DEMAND-ANALYSISPHASE

In the analysis phase, the linearized system, with effective stiffnesses and an effective damping ratio is subjected
to the design loads — seismic and gravity. The portal frame under consideration in the implementation of the
procedure can be reduced to an SDOF system, taking both types of loadsinto account, through static condensation
of the stiffness matrix. The natural frequency of the system, w,, is cal culated from thi s static condensation. When
gravity bending moments are accounted for, the linearized stiffness is not equal to the limit-state force divided by
the displacement at the limit state. Inthe analysis, the gravity forces must be included and are calculated in the
stati ¢ condensation.

RESULTS

The procedure presented i n this paper was i mplemented i n the design and analysis of aportal frame whose design
characteristics are within the range used in the development of the methodol ogy, but are not identical to any
particular frame. A different set of eight time histories was used in the analysis and 5% viscous damping was
included in the nonlinear system.

A pushover analysis of the portal frame was performed to determine (a) the lateral load and deformati on response
characteristics and (b) the internal loads and deformations necessary to determine the linearized stiffness
characteristics. The limit-state load and deformation, F, and D,, for the portal frame were cal culated to be 1218
kipsand 15.7 inches, respectively. Theinitial and secondary stiffnesses, K, and K,, were cal cul ated to be 138.3 and
41.5 kip/inch, respectively. The corresponding yield force and deformation, F, and D,, were cal cul ated to be 810
kip and 5.9 inches, respectively, with a displacement-ductility capacity of 2.7. The push-over envel ope for the test
structure is shownin Figure 7.

The natural period of the linearized structure was cal cul ated to be 1.8 seconds. The damping ratio of the linearized
structure, including the 5% viscous damping, was cal cul ated to be 10.1%. The mass of the system, corresponding
to a column axial load of 6% of its gross capacity, was 2.7*10° Ib-mass. Using these properties, the linearized
system was subjected to eight ground motions, scaled to correspond to the prescribed limit state..

To assess the validity of the methodol ogy, the response of the lineari zed system was compared to the response of
the nonlinear prototype subjected to the same input ground motion. These two responses are compared in Figure
8. This figure corresponds to the response to the Tabas ground motions in the X direction, scaled by a factor of
1.253.

The ratio of maxi mum el asti c-deformati on demand to maxi mum nonlinear-deformeation demand was cal cul ated
for each time history. The mean and standard deviation for all eight time histories were cal culated to be 1.06 and
12.7%, respectively.

CONCLUSIONS

The implementation of the methodology to the analysis and design of a test frame has shown that proposed
procedureyiel dspromisingresults. The linearizati on procedureistwo-fol d. First, the stiffnesslinearizationisbased
on the physical response of the structural components and can be extended to MDOF systems. The esti mati ng of
the effective damping ratio is based on a rigorous analytical study and takes into account more structural
characteristics than the displacement ductility alone.
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