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SUMMARY

The development and implementation of a design methodology to estimate structural capacities and
demands in seismic design is presented herein. In the methodology, the deformation capacity of a
prototype structure is determined from a nonlinear push-over analysis and the displacement demand
is calculated from a linear-elastic analysis of a model of the structure. The stiffness and damping
characteristics of the linearized model are chosen to represent the inelastic behavior of the structure
at a prescribed limit state. The methodology gives the linearized properties directly from the force-
deformation behavior determined from the push-over analysis to the limit state. The methodology
is unique because it give local effective stiffnesses associated with the plastic hinge zones. Because
the plastic hinge zones have different levels of inelastic response, different stiffness parameters are
assigned to the different regions of the nonlinear members. The linearized damping ratio is
calculated from the limit-state displacement ductility level. The procedure is implemented for the
analysis and design of two-column bridge piers with a flexible cap beam, loaded in the transverse
direction of the bridge (in the plane of the pier). The results of this study show that a consistent
linearization procedure, which takes into account the stiffness and energy-dissipation characteristics
of the structural components locally, can be used for a displacement-based design procedure for
bridges.

INTRODUCTION

The development and implementation of a design methodology to estimate structural capacities and demands in
seismic design is presented herein. For design purposes, the simplified methodology uses static push-over analyses
and elastic dynamic analyses. Nonlinear stiffness reduction and hysteretic energy dissipation (damping) are the
primary dynamic characteristics considered in the model.

Current procedures using push-over analysis are typically able to characterize the lateral-deformation capacities
and lateral-load strengths of structural systems accurately. Available simplified analysis tools used to calculate the
force and deformation demands, however, are limited in their ability to capture the dynamic characteristics of a
nonlinear-inelastic prototype in a linear-elastic analysis model. 

Because local strains and deformations are considered to be the best indicators of damage, displacement-based
design, where member deformation demands and capacities are the primary design parameters, was used as the
framework for the proposed procedure. Here, the deformation capacities calculated from a nonlinear static push-
over analysis are compared to the deformation demands calculated from a linear-elastic dynamic analysis.

The proposed procedure was implemented in the design and evaluation of a two-column reinforced-concrete bridge
bent subjected to vertical gravity loads distributed along the beam length and horizontal seismic ground excitation
in the plane of the frame. The bent is shown in Figure 1and Figure 2. What is particular to the seismic response
of bridge structures is that the structural members are designed to have plastic hinges forming at the column ends
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rather than in the beams, as is typical in building design. The primary consequence of this design method is that
the interaction between the column axial load and flexural strength and stiffness becomes important in the design
process. For statically indeterminate systems, the interaction precludes calculating the lateral load strength and
deformation capacity directly and independently.

PROPOSED PROCEDURE

In the proposed procedure the lateral-deformation capacity and demand of a structure subjected to the design gravity
and seismic loads are calculated and compared. The procedure consists of three phases: the capacity-evaluation
phase, the linearization phase, and the demand-evaluation phase. In the capacity-evaluation phase, the structure
is subjected to a nonlinear static push-over analysis. The limit-state lateral deflection, together with the local
element loads and deformations, are obtained from this analysis. In the linearization phase, a linear-elastic model
of the prototype structure is developed from the results of the push-over analysis. The linearized stiffness and
damping characteristics are determined in this phase. In the demand-evaluation phase, the linearized model is
subjected to the design loads and the lateral-deflection demand is calculated from a linear-elastic dynamic analysis.

CAPACITY EVALUATION PHASE

A nonlinear static push-over analysis is performed on the structure to determine its internal load and deformation
characteristics. The calculated lateral-deflection capacity will be compared to the demand calculated in the analysis
phase to evaluate the design. 

In the static push-over analysis, the portal frame is subjected to simultaneous gravity loads and an incremental
lateral deflection at the deck level. The lateral resisting force at the base is determined from a state determination
and equilibrium at each deflection increment. The analysis is terminated when the prescribed limit state is reached.
At the limit state, a state determination is performed to determine the internal loads and deformations of each
structural component. These element loads and deformations are used to calculate the linearization parameters and
to determine local demands once the global-response criteria have been satisfied.

Bilinearization of Push-Over Curve

The nonlinear lateral load-deformation response of the prototype structure can be represented by a bilinear
approximation, as shown in Figure 3. The bilinear approximation has three defining characteristics. (a) The initial
stiffness, K1, (b) the maximum load and deformation, Fu and ∆u, respectively and (c) the second stiffness, K2.

The initial elastic stiffness is calculated from a linear-elastic analysis where the flexural stiffness of the members,
EIcr, is defined by the ratio of bending moment and the curvature at first yield, My and φy, respectively. First yield
for the circular-column elements is defined as the point where the column longitudinal reinforcement first yields
in tension, with the dead-load axial force.

The maximum load and deformation at the limit state, Fu and ∆u respectively, in the bilinear approximation are
equal to those of the nonlinear curve. The second stiffness, K2, is calculated by equating the strain energy in the
nonlinear curve to that in the bilinear approximation, as shown in Figure 4:

where the nonlinear work, Wo, can be calculated from integrating the piece-wise-linear force-deformation curve
to the limit-state deformation.

Definition of Yield & Ductility

The lateral load, Fy, and lateral deformation, ∆y, at yield are defined by the intersection of the two stiffnesses in the



-3- 1851

[2]

[3]

bilinear approximation of the push-over response curve:

The yield and limit-state deformations are used to defined the limit-state displacement ductility, µ∆:

LINEARIZATION PHASE

In the linearization procedure a linear-elastic model whose dynamic characteristics are representative of those of
the nonlinear structure at the limit state is created. The equivalent dynamic characteristics are defined so that the
maximum load and deformation demands in the linear-elastic model are the same as those in the nonlinear-inelastic
structure. 

The nonlinear stiffness reduction and hysteretic energy dissipation characterize the dynamic response of the
prototype structure. It is important that the linearization procedure models these two characteristics accurately. To
represent the stiffness reduction, the secant stiffness to the limit state is taken as the effective stiffness of the linear-
elastic model. The effective viscous damper in the linear-elastic model represents the combined effects of both the
viscous damper and the hysteretic-energy dissipation of the prototype structure.

Linearized Stiffness

The development of the proposed procedure is based on the assumption that the structural elements are flexural
elements, where only flexural-bending deformations are considered in the modeling. Hence, element stiffness is
represented in terms of the section moment of inertia, I. The section moment of inertia is typically characterized
in terms of bending-moment and curvature response. Modeling difficulties arise in a yielding system where the
nonlinear response of the structural materials results in a reduction in flexural stiffness, EI, with increasing
deformation. Where E is the modulus of the material. The modeling of this stiffness reduction when the structure
reaches its limit state is the basis of the proposed linearization procedure.

To simplify the analysis procedure, elements that are designed to remain elastic during the response are assumed
to remain elastic, as is the case for the beam in the bridge bent. The flexural stiffness typically used for these elastic
elements is the cracked-section stiffness, Icr, defined equal to the yield moment divided by the yield curvature and
elastic modulus. These quantities can be calculated from a section analysis. Because this stiffness remains constant
for any level of deformation and is defined a priori, the selection of this stiffness is left to the choice of the designer.

The proposed procedure takes into account the variation of damage in the different structural components by
performing a step-by-step static push-over analysis. This step-by-step procedure allows monitoring of all element
sections using calculated moment-curvature relationships at the element-section level and follows the sequence of
hinge formation. The damage indices for the individual structural elements are determined from the push-over
analysis rather than assumed a priori and, hence, are particular to each structural element.

In addition, the proposed procedure takes into account the distribution of deformation along the nonlinear structural
elements and is able to account for the deformation localization by assigning different stiffness parameters to
different regions of the structural elements. The columns in the portal frame considered herein, for example, are
subjected to double bending. Based on these boundary conditions, plastic hinges are expected to from at both
column ends.

To calculate the linearized-model stiffness characteristics, the element forces (bending moment, shear and axial
forces) and nodal deformations (translations and rotations) are extracted from the results of the push-over analysis
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at the limit state. These forces and deformations are shown in Figure 5. The linearized model at the limit state is
shown in Figure 6. At the limit state, the element forces are the same in the linearized model as those in the
nonlinear prototype. To maintain proper modeling of stiffness distribution, the joint translations and rotations are
also equal. The difference between the two structural systems lies in the distribution of stiffness along the nonlinear
elements. In the prototype structure, the curvature distribution obeys a nonlinear moment-curvature relationship.
The resulting curvature along the nonlinear column element is shown in Figure 5. 

On the other hand, each column in the linearized model has three segmentally-continuous linear-elastic stiffnesses.
The stiffness distribution, and the resulting curvature distribution is shown in Figure 6. Joint rotation and
translation impose the two compatibility equations for each nonlinear element necessary to calculate the two end-
stiffness parameters, Ia and Ib, shown in Figure 6. The linearized stiffness of the central element, Io, is assumed
constant and equal to the cracked moment of inertia when the column is subjected to the gravity axial force alone
and is calculated a priori.

The stiffness parameter of each nonlinear element is calculated from its internal forces and deformations. The
following equations for the nodal translation, ∆, and the nodal rotation, Θ , shown in Figure 6 are used to determine
the stiffness parameters for each column:

Where L is the length of the element and Ma and Mb are the end moments, as shown in the figure. Solving for the
stiffness parameters:

Where:

and
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The length of the end segments, ba and bb, are additional parameters calculated from the bending moment diagram.
The length of these segments is equal to the length over which the bending moment exceeds the yield moment for
the section subjected to the dead-load axial force. Based on the graphics of Figure 6, the lengths of the end
segments:

The sign convention used in the above expressions is consistent with Figure 5 and Figure 6.

Linearized Damping

The viscous-damping force in the linearized model accounts for the non-conservative forces in the nonlinear
prototype: the hysteretic restoring force and the viscous-damping force. The effective damping ratio proposed in
this paper was obtained by determining the damping ratio necessary to yield the same maximum demand in the
linear-elastic system as in the nonlinear prototype structure. The response of the nonlinear prototype structure was
obtained using a nonlinear finite-element analysis program. The input ground motions were selected and scaled
so that the maximum demand in the nonlinear prototype was equal to the limit-state deformation obtained in the
push-over analysis. The limit state chosen for the implementation procedure was the ultimate limit state,
corresponding to the limiting curvature when the extreme compression fiber in the concrete core reaches a strain
equal to the maximum strain capacity of the confined concrete. The nonlinear analysis included both the lateral
input motion and the gravity load distributed along the beam element. The study was performed using eight
unscaled time histories and thirteen frames. An average effective damping ratio was calculated for each frame.

From the results of the study, the linearized damping ratio proposed here is a function of the characteristics of the
linearized push-over curve:

The displacement-ductility factor, µ∆, is defined above and the stiffness ratio α is equal to the ratio of the second
stiffness to the initial stiffness, as derived above and shown in Figure 3:

ζ o is the viscous-damping ratio of the nonlinear system. This relationship was obtained by equating the one-cycle
hysteretic energy from an analytical force-deformation model for reinforced concrete to the one-cycle energy of the
effective viscous damper. The Takeda force-deformation response model was used for the hysteretic modeling.

The above expression for the effective damping ratio was developed for structures whose linearized natural period
ranged between 1.0 and 3.2 seconds. The displacement-ductility range was between 2 and 6.2.
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DEMAND-ANALYSIS PHASE

In the analysis phase, the linearized system, with effective stiffnesses and an effective damping ratio is subjected
to the design loads – seismic and gravity. The portal frame under consideration in the implementation of the
procedure can be reduced to an SDOF system, taking both types of loads into account, through static condensation
of the stiffness matrix. The natural frequency of the system, ωn, is calculated from this static condensation. When
gravity bending moments are accounted for, the linearized stiffness is not equal to the limit-state force divided by
the displacement at the limit state.  In the analysis, the gravity forces must be included and are calculated in the
static condensation.

RESULTS

The procedure presented in this paper was implemented in the design and analysis of a portal frame whose design
characteristics are within the range used in the development of the methodology, but are not identical to any
particular frame. A different set of eight time histories was used in the analysis and 5% viscous damping was
included in the nonlinear system.

A pushover analysis of the portal frame was performed to determine (a) the lateral load and deformation response
characteristics and (b) the internal loads and deformations necessary to determine the linearized stiffness
characteristics. The limit-state load and deformation, Fu and ∆u, for the portal frame were calculated to be 1218
kips and 15.7 inches, respectively. The initial and secondary stiffnesses, K1 and K2, were calculated to be 138.3 and
41.5 kip/inch, respectively. The corresponding yield force and deformation, Fy and ∆y, were calculated to be 810
kip and 5.9 inches, respectively, with a displacement-ductility capacity of 2.7. The push-over envelope for the test
structure is shown in Figure 7.

The natural period of the linearized structure was calculated to be 1.8 seconds. The damping ratio of the linearized
structure, including the 5% viscous damping, was calculated to be 10.1%. The mass of the system, corresponding
to a column axial load of 6% of its gross capacity, was 2.7*106 lb-mass. Using these properties, the linearized
system was subjected to eight ground motions, scaled to correspond to the prescribed limit state..

To assess the validity of the methodology, the response of the linearized system was compared to the response of
the nonlinear prototype subjected to the same input ground motion. These two responses are compared in Figure
8. This figure corresponds to the response to the Tabas ground motions in the X direction, scaled by a factor of
1.253.

The ratio of maximum elastic-deformation demand to maximum nonlinear-deformation demand was calculated
for each time history. The mean and standard deviation for all eight time histories were calculated to be 1.06 and
12.7%, respectively.

CONCLUSIONS

The implementation of the methodology to the analysis and design of a test frame has shown that proposed
procedure yields promising results. The linearization procedure is two-fold. First, the stiffness linearization is based
on the physical response of the structural components and can be extended to MDOF systems. The estimating of
the effective damping ratio is based on a rigorous analytical study and takes into account more structural
characteristics than the displacement ductility alone.
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Figure 2.  Two-Column Reinforced-Concrete Bridge Bent
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