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SUMMARY

In this paper the genetic algorithm-based control methodology that have been proposed by authors
is described. The results of three different controllers corresponding to different robustness criteria
are presented and compared. Only the acceleration responses of scaled building model are used as
feedback. To estimate the full state space of the system, the state space is reconstructed from the
time delayed state feedback based on the embedding theorem.

INTRODUCTION

This paper presents the results and comparisons of three controllers developed by the genetic algorithm based
control methodology (Kim and Ghaboussi 1999). As a model building three-story scale building suggested in the
first benchmark problem (Spencer 1997) are used. Active mass driver system placed at the top of the scaled
building has been modelled in the benchmark problem. As feedback only the acceleration responses of the
building are used because the acceleration measurement is most reliable and least expensive compared with other
measured responses such as velocity and displacement. However, just the acceleration measurements are not
enough to represent full state responses of the system. To approach full state control performance, the proposed
control method uses the state space reconstruction technique. The method is based on the Takens’ embedding
theorem that states the observed time series data can recover the full state space of the original system. This
means the system can be estimated only by using measured time history responses instead of using uncertain
system parameters. Accelerations of floors and an AMD are measured and used as feedback in this study.

To improve the controller’s performance in real applications, the robustness of the controller to the unmodelled
dynamics and signal noises should be considered in the design. However there are tradeoffs among the design
objectives such as the response reduction, control efforts, and robust stability. Overall performance of the control
system should be evaluated by those multiple objectives. Genetic algorithms are used to optimize the parameters
of the proposed controllers. Nonlinear polynomial functions of the explicit design criteria are used as a multi-
objective function in this study. The proposed method is applied to the vibration control of a seismically excited
model building. Several controllers are developed with different design criteria. The results are compared and
discussed.

A GENETIC ALGORITHM-BASED CONTROL METHODOLOGY

Genetic algorithms are optimization search methods that are inspired by natural selection and natural genetics. In
GAs the parameters of the problem are coded as finite length strings which are composed of genes, and strings
undergo evolution over several generations. GAs have three major operators designed to model the evolutionary
forces such as selective reproduction, recombination and mutation. Compared with the traditional gradient based
search methods, GAs are very simple but powerful search methods because GAs do not need to reformulate the
problem to search a nonlinear and non-differentiable space. The flexibility in the formulation of the fitness
function is also one of the advantages of using GAs. The fitness function can be formulated as a polynomial
function of the output of the system to be optimized. Therefore multiple optimal design criteria can be
considered easily.
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In the field of control design, GAs have been used successfully to obtain gains for optimal controller (Kundu
and Kawata 1996), tune the weights of neuro-controllers (Lewis and Fagg 1992), and scale parameters of
fuzzy controllers (Kim et al. 1995).

For the control of the civil structures, the GA based control method has been proposed (Kim and Ghaboussi
1999). The proposed control method estimates the system states from the observed time series data using the
state space reconstruction technique that is based on the embedding theorem.

STATE SPACE RECONSTRUCTION FOR SYSTEM ESTIMATION

The n-dimensional reconstructed state space at time step t is defined as )(tnW  by the following equation in

terms of the one-dimensional observed time series w(t) with time delay τ.

Ws n n
× (t) = (t) (t- ) (t-( -1) )w w w

Tτ τ.... [m r    (1)

The reconstructed state space is not the same as the original state space, but it can characterize the dynamical
properties of the original system for sufficiently large value of n. When the dimension of the original state space
is k, a value of n > 2k is recommended (Takens 1981).

CONTROLLER DESIGN

Evaluation Model and Control Constraints

Controllers are designed and tested on a benchmark problem. The structure considered in the benchmark
problem is a scale model of a three-story building using an active mass driver as a control device. The state space
parameters of this structural system, including the actuator and sensor dynamics, have been obtained from the
experiment. More details on the benchmark problem can be found in the reference (Spencer et al. 1997).

Control constraints are placed on the system for a realistic numerical simulation. The RMS constraints and the
peak response constraints are listed in Eq. (2), where σ represent the RMS value of its subscript.

σ σ σu 1 volt, xam , and xm  cm≤ ≤ ≤2 3g    (2)

u max  volt, xam max , and xm max  cm≤ ≤ ≤3 6 9g    (3)

As additional constraints (control implementation constraints), sampling time is 0.001 seconds, computational
time delay is 200 m seconds, A/D & D/A converter has 12 bit precision and a span of ±3 volts, and each of the
measured responses contains an RMS noise of 0.01 volts.

Genetic Algorithm-Based Controller

We have chosen to use four sensors which measure the absolute accelerations of three floors, 321 ,, aaa xxx , and

the absolute acceleration of the AMD mass, amx . The feedback vector y(t) contains four sensor readings at time

t. By using the reconstructed state feedback, we are using the current vector of sensor reading y(t) plus previous
samples of sensor readings. Therefore, the dimension of the reconstructed state space of the four sensor feedback
will be equal to 4×n with n-1 previous time histories. The controller also uses previous time histories of control
signals as feedback.

Y y y y4 (t) = (t) (t- ) .... [t- 1) ]× −n nτ τ(m rT
   (4)

In the remainder of this study, we have used the 23-dimensional reconstructed state space (m=3, n=5) which

consists of 20-dimensional reconstructed state space vector )(54 t×Y  and the 3-dimensional reconstructed state

space vector )(3 τ−tU .
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U3(t - ) = u(t- ) u(t-2 ) u(t-3 )τ τ τ τm rT
   (5)

The control input is calculated from Eq. (5) with the additional constraint from the saturation of the actuator

which requires that  |u| ≤ +3 volts as a limit. The controller gain matrix RG  has 23 gains. The elements of the

gain matrix RG  are optimised through evolution by using GAs.

u(t) = u(t - ) + u(t),  where u(t) = R

4 5(t)
3(t- )

τ
τ

∆ ∆ G Y
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×R
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T|

U
V|
W|

   (6)

Genetic Algorithm Parameters

The simple GA (Goldberg 1989) is used to optimise feedback gains. Ten bits are used to represent each gain as a
real number by mapping, making the string length equal to 230 bits.  The population size was 50 and the
evolution was continued up to 1000 generations.  Genetic operators used are fitness proportional (roulette wheel
type) random reproduction, two point crossover at a rate of 0.8 and mutation at a rate of 0.003.

Fitness Function

The fitness function F is a nonlinear polynomial which consists of powered products of the normalized peak and
RMS values of the responses of floors and the AMD. Each criterion in C1 - C3 has been designed to converge to
1.0 when the corresponding system response is reduced to zero.
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For the evaluation of the fitness, peak accelerations, peak displacements, RMS accelerations and RMS
displacements of the three floors and active mass driver and RMS value of control signal are used as the
parameters of the cost function as in Eqs. (7) - (9). The denominators b, d, z, q, and w are the normalisation
factors, and powers a, g, e, h, and y are the exponential weight factors used to adjust the weight of responses
which are to be reduced according to the control objective. In this study the factors are chosen by trial and error
as follows: bi=2.0, bm=1.0, di=dm=1.0, zi=2.0, zm=1.0, qi=qm=1.0, and w=1.0 for normalisation, and ai=1.0,
am=3.0, gi=1.0, gm=2.0, ei=em=1.5, hi=hm=1.0, and y=1.0 for the exponential weight factors.

F
C

C
C Ci= ref

T

T

i 1,5

, =
=

∏  (10)

CT in Eq. (10) is the total cost, and the fitness F is the inverse of the total cost with a normalisation factor Cref

(=1.0 in this study).

Penalty Function

The penalty function has been successfully used for solving the constrained optimisation problem by several
researchers (Homaifar et al. 1994; Gray et al. 1995). This penalty function is employed to impose the benchmark
problem’s hard constraints, i.e. maximum displacement and acceleration of AMD. Functions P1 and P2 in Eq.
(11)-(12) are the penalty functions.
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EVALUATION CRITERIA

Ten evaluation criteria are defined in the benchmark problem (Spencer et al. 1997). These criteria are
summarised in Table 1. The first five performance measures are RMS responses and the latter five are based on
peak responses.

Table 1. evaluation criteria of benchmark problem
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NUMERICAL RESULTS

Numerical simulations of the GA based controllers have been performed on the benchmark problem. Three
controllers have been developed in this study. The one has been developed without a sensor noise (Case A), and
other two controllers have been designed by adding noises (Case B & C) to the input and output of the controller
to consider a sensor noise and the model uncertainty (Figure 1).

Figure 1. inclusion of noise for robustness consideration

The noise added to each of the input and output of the controller is a white noise span of ±0.1 volts in Case B
and ±0.5 volts in Case C, which are 3.3 percent and 16.7 percent of the total span respectively. To develop each
controller, only the El Centro earthquake excitation data provided by the benchmark problem have been used
upto 5 seconds. The time delay t=0.001 seconds has been used for the state space reconstruction.
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Table 2. comparisons of results using evaluation criteria

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10

Case A 0.127 0.203 0.721 0.684 0.677 0.357 0.627 2.277 2.062 1.597

Case B 0.130 0.201 0.726 0.684 0.643 0.356 0.632 2.361 2.067 1.575

Case C 0.153 0.245 0.617 0.578 0.520 0.371 0.673 1.712 1.535 1.030

Uncont
rolled

0.589 0.999 0.072 0.082 1.068 0.620 0.718 0.077 0.083 1.142

Table 2 shows the list of the evaluation results. Case A and Case B do not have many differences in the
evaluation criteria, but there is a lot of gain reduction in the loop gain transfer function in high frequencies. In
Case C there are some deterioration in inter-story drifts and floor accelerations as shown in criteria J1, J2, J6,
and J7. However, control efforts are reduced very much instead. The loop gain transfer function of Case C has
the lowest gains in high frequencies in this study. By increasing the noise levels at the input and output node of
the controller while optimising the controller by GAs, more robust controllers have been developed as expected.

Figure 2. loop gain transfer function

CONCLUSIONS

In this paper three genetic algorithm based controllers have been designed and the results have been compared.
Genetic algorithms are used to optimize the parameters of the proposed controllers with respect to the multiple
design objectives. Only the accelerations are measured and used as feedback. Sensor noises and model
uncertainties are considered (Case B & C) in the process of developing controllers to improve the controllers’
robustness. Results shows the controllers’ robustness is improved with some tradeoffs in the response reduction
by increasing the noise levels at the input and output node of the controller while optimizing the controller.



18616

REFERENCES

Goldberg, D.E. (1989) Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley.

Homaifar, A., Qi, C. X. and Lai, S.H. (1994), “Constrained Optimization Via Genetic Algorithms”, Simulation,
62, 4, pp242-254.

Kim, J., Moon, Y.  and Zeigler, B. (1995), “Designing Fuzzy Net Controllers Using Genetic Algorithms”,  IEEE
Control Systems, pp66-72.

Kim, Y.-J. and Ghaboussi, J. (1999), “A New Method of Reduced Order Feedback Control Using Genetic
Algorithms”, Earthquake Engineering and Structural Dynamics, 28, pp193-212.

Kundu, S. and Kawata, S. (1996), “Genetic Algorithms for Optimal Feedback Control Design”,  Engng. Applic.
Artif. Intell., 9, 4, pp403-411.

Lewis, M.A. and Fagg, A.H. (1992), “Genetic Programming Approach to the Construction of a Neural Network
for Control of a Walking Robot”, Proc. IEEE Inter. Conf. Robot. Automa., pp2618-2623.

Spencer Jr., B.  F., Dyke, S. J.  and Deoskar, H.S. (1997), “Benchmark Problems in Structural Control Part I:
Active Mass Driver Systems”, Proc. 1997 ASCE Structures Congress.

Takens, F. (1981), “Detecting Strange Attractors in Turbulence”, Springer Lecture Notes in Mathematics, 898,
pp366-381.


