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SUMMARY

A calculating method is proposed to evaluate the dissipative energy and the stored elastic energy
of a soil element during a liquefaction test. The dissipative energy is determined as continuous
values and the stored elastic energy is calculated as the difference between the shear work and the
dissipative energy. To study the relationship among the excess pore water pressure, the dissipative
energy and the stored elastic energy, several series of liquefaction tests were done. Four types of
sandy soil, disturbed and undisturbed samples, were used as the test materials and various
amplitudes of sinusoidal waves and earthquake motions were loaded as shear stress.

There is a characteristic relationship between the dissipative energy and the observed excess pore
water pressure buildup in each step of shear stress. The square root of the dissipative energy is
proportional to the increase of observed excess pore water pressure. This means that the energy
owing to the negative dilatancy of sand is proportional to the dissipative energy. The stored elastic
energy is approximately proportional to the temporary decrease of excess pore water pressure with
large shear strain.

INTRODUCTION

It is known that the dissipative energy is closely related to the pore water pressure development during
liquefaction process. Towhata and Ishihara [Towhata and Ishihara (1985)] carried out several kinds of cyclic
loading tests, and calculated the dissipative energy as the shear work. They found that there is a unique
relationship between the shear work and the pore water pressure buildup, and this relation is independent of the
shear-stress history. Similar studies were accomplished by Sakai and Ochiai [Sakai and Ochiai (1986)], and by
Taji et al. [Taji et al. (1993)]. Nakano and Saito [Nakano and Saito (1993)] measured the dissipative energy from
area of hysteresis loops, and derived the independence of shear-stress amplitude on the relation between the
dissipative energy and the development of pore pressure.

In these previous studies, the dissipated energy is not obtained as a continuous function but as discrete quantities.
The shear work is theoretically equivalent to the dissipative energy in elasto-plastic body when the incremental
shear work is calculated by a half cycle, ranging in stress from 0 to 0 in each integral step. The area of hysteresis
loop can be measured by each half cycle, too. But the stress-strain relations of soil element during liquefaction
process do not show the relation of elasto-plastic body and their hysteresis loops do not close in each cycle,
correctly.
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The authors have proposed the calculating method to determine the dissipative energy as a continuous function
during sinusoidal loading [Ogawa et al. (1995)]. This method bases its concept on the mechanical model of
elasto-plastic body proposed by Iwan [(Iwan 1966)]. The stored potential energy is estimated as the difference in
energy between the shear work and the dissipative energy.

In this paper, the authors propose the improved method to calculate the dissipative energy of irregular loading
such as the time history of shear stress during an earthquake. The method was applied to the results of several
liquefaction element tests such as various amplitudes of sinusoidal shear stress tests and irregular shear stress
tests simulated earthquake stress motions.

ANALYTICAL METHOD

Dissipative Energy of curvilinear relations

Most soils have curvilinear stress-strain relationships while excess pore water pressure is not accumulated. The
gradient of the skeleton curve is decrease constantly according as the strain as illustrated in Figure 1. In this
figure, we denote a strain amplitude γ and infinite increment and decrement ± ∆γ across γ. The shear stress τ
increases as τ (γ−∆γ ), τ (γ ) and τ (γ +∆γ ) according to increase in shear strain as γ−∆γ, γ and γ +∆γ,
respectively. Now we suppose the shear stress increases linearly, and denote the shear rigidity as G ranging from
γ−∆γ to γ and G−∆G ranging from γ to γ +∆γ, respectively

The decrease in the shear rigidity is closely related to the dissipative energy during curvilinear relations. It is
easy to comprehend the relation of the shear rigidity
decrement ∆G and the dissipative energy by the
mechanical model of elasto-plastic body proposed by
Iwan(1966). This model composed of simple linear springs
and Coulomb friction elements arranged as shown in
Figure 2. The friction elements remain locked until the
spring force on them exceeds, then dislocate. The decrease
in shear rigidity means the beginning of dislocation of a
certain friction element. The dissipative energy generates
by the dislocation of this friction element. The frictional
force of the element is equivalent to the spring force
connected to the element, and the spring coefficient is the
same as the shear rigidity decrement ∆G. The friction
force of the sliding element ∆τ is defined as follows.

)1(γτ ⋅∆=∆ G
When the shear strain increases from γ to Γ, the

dissipative energy of the friction element ∆e is the same as
the shear work of the frictional force ∆τ. And the
dissipative energy is derived from multiplying the friction
∆τ by the strain increment Γ−γ as the following equation:

)2()( γτ −Γ⋅∆=∆e

The total dissipative energy of the skeleton curve process
e1 is determined by the integration from origin to Γ of
equation (2) as follows:
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The energy dissipation during hysteretic curves is determined in a similar way to the skeleton curve. But the
equation must be modified to account of the fact that the shape of a hysteretic curve is different from the shape
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of a skeleton curve. According to Masing's law [Ohsaki (1980)], the shape of the hysteretic curve is multiplying
the shape of the skeleton curve by 2. This rule is explained from Iwan’s mechanical model that the completely
expanded (or contracted) spring is applied reverse force then contracting (or expanding) until the spring force
reaches the friction of Coulomb element. It means that the strain value for estimating frictional force is double-
counted in equation (1). Therefore the shear strain γ must be γ /2 in the hysteretic curve process.
If shear strain reaches the maximum strain value of past stress-strain relations, the hysteretic curve meets the
skeleton curve. Shear strain exceeds the maximum past strain γmax, the hysteretic curve follows along the
skeleton curve and the shape of the hysteretic curve is the same as the skeleton curve. Consequently, the shear
strain of equation (1) must be reset as γ. To summarize the relations mentioned above, the dissipative energy ei

of the hysteresis loops are given as the following equations.
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Where, γ0 is the strain at the turning point of the hysteretic curve and selection of the unloading point or the
reloading point is according as the unloading or reloading curve. To change equation (4) into a partial integral, it
is proved that the dissipative energy of one cycle of a hysteresis loop is same as the area enclosed with the
hysteresis loop.

The total dissipative energy EL is obtained by sum of ei for the skeleton curve and the unload and reload curves
of hysteresis loops as follows:

)5(∑=
i

iL eE

Dissipative energy of observed stress-strain relations during liquefaction process

The stress-strain relations during liquefaction process show “banana loop” shapes and do not agree with the
relations of curvilinear process. This phenomenon is caused by the pore water pressure buildup. Increase or
decrease in the shear stress is according as decrease or increase in the excess pore water pressure.
To evaluate the dissipative energy of observed stress-strain relations, use is made of the following assumption:
The shear stress τ is proportional to the effective confining stress σ′.

It is well known that the shear stress is proportional to (σ′)m, precisely (Silver and Seed, 1971). The multiplier m
is less than 1.0 and approaches 1.0 as the strain amplitude increases. Consequently, the assumption mentioned
above gives approximate results and causes errors within a small strain range, but these errors are negligible in a
large strain range. Almost all part of liquefaction process progresses in the large strain range, therefore the errors
of the assumption are supposed to be negligible.

According to the assumption, equation (1) is changed into difference equation and (3) is modified as follows:
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Where ∆τ’ and ei’ are the friction force and the total dissipative energy in effective stress condition, respectively.
To calculate equation (6) and (7) simultaneously, the increment of dissipative energy ∆E’i,m in effective stress
condition during the skeleton curve and the hysteresis loops are derived from equation (4) and (7).
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Where i denotes the number of half cycle, m the number of incremental step and k the number of the first point
where the absolute strain exceeds the maximum strain of past loops. τ(0), γ(0) and σ’(0) are shear stress, strain
and effective confining stress at the turning or the reloading point, respectively. The total dissipative energy EL’
is given by equation (9).

∑ ∑ ′∆=′
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The stored potential energy EP’ is calculated as the difference in energy between the shear work W and the
dissipative energy EL’ as follows:

)10(′−=′
LP EWE

LIQUEFACTION ELEMENT TEST DATA

The liquefaction element test data used for this analysis was carried out under the following conditions: a shear
apparatus was a stress controlled triaxial torsion shear apparatus; a soil specimen was a hollow cylindrical shape,
7 cm high, with an inner and outer diameter of 3 and 7 cm, respectively. The disturbed test specimens are
composed of Toyoura sand and compacted as 50 % and 80 % of relative density, respectively. The materials of
undisturbed test are silty fine sand and sandy silt. These specimens were sampled at Nishi-Mizue on Koto word
in Tokyo. The silty fine sand specimens were sampled from 3.0m to 4.1m depths and N-value of the standard
penetration test is about 3. Contents of sand, silt and clay are 75.0%, 17.0% and 8.0%, respectively. Mean
particle size D50 is 0.1622mm. The sandy silt specimens were sampled from 5.2m to 6.05m depths and N-value is
3. Contents of sand, silt and clay are 28.1%, 53.9% and 18.0%, respectively. Mean particle size D50 is
0.0418mm.

All specimens were isotropically consolidated under a confining pressure of 98 kPa and back pressure of 196
kPa were applied then sinusoidal shear stress of various amplitudes were applied in cycle of 0.1 Hz under
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undrained condition. Skenpton’s B-value of more than 0.95 was obtained in all the specimens. Amplitudes of
sinusoidal shear stress and liquefaction test results are shown in table 1.

The irregular loading tests were experimented with the Toyoura sand (Dr=80%), the silty fine sand and the sandy
silt specimens. Test conditions are same as the sinusoidal shear tests. To simulate the time histories of shear
stress during earthquakes, the observed acceleration motions were modified by multiplication factors. The
acceleration motions used were following three seismograms: the 1983 Nihonkai-chubu earthquake observed at
Kaihoku Bridge by Public Works Research Institute, Ministry of Construction, the same earthquake observed at
Miyako Port by Port and Harbour Research Institute, Ministory of Transport, the 1995 Hyogoken-nambu
earthquake observed at Kobe ocean meteorological observatory by Japan Meteorological Agency. The
experimental conditions are shown in table 2.

ANALYTICAL RESULTS

The dissipative energy and excess pore water pressure during sinusoidal loading

The dissipative energy is calculated until the excess pore
water pressure exceeds 95% of the initial effective
confining stress. Figure 3 shows relations between the
dissipative energy and the excess pore water pressures thus
obtained from a series of Toyoura sand (Dr=50%) tests.
Although the amplitudes of cyclic shear stress were
different in each of the tests, all the envelopes of peaks in
each curve are similar in shapes. The peaks of the
dissipative energy approximately correspond to the shear
work evaluated within every half cycle. Therefore, the
results of previous studies that the pore water pressures are
uniquely correlated with the shear work of every half cycle
are observed in this study.

The relationships between the square root of dissipative
energy and the excess pore water pressures are illustrated
in Figure 4. All the envelopes of peaks in each curve are
approximately linear and these gradients are almost same
each other ranging in the pore pressure to 70kPa. The
stored elastic energy and the excess pore water pressures
in calculating steps are shown in Figure 5 (Td1) and
Figure 6 (Td2). The stored elastic energy increases
vigorously ranging in the pore pressure from 70kPa, and
the decrease of pore water pressures seem to be
proportional to the stored elastic energy developments.

Figure 7 shows relations between the square root of
dissipative energy and pore pressures obtained from
Toyoura sand (Dr=80%) tests. All the envelopes of peaks
in each curve are approximately similar but linear relations
disappear ranging in the pore pressure from 40kPa.
Corresponding to these, the stored elastic energy is
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increasing within early calculating steps as shown in Figure 8.

The relationships between the square root of dissipative energy and the pore pressures of undisturbed silty fine
sand and sandy silt are shown in Figure 9 and Figure 11, respectively. There are little difference among the
envelope curves but the unique correlation between the envelope curves and pore water pressures are observed.
The linear relations between the envelope curves and pore pressures are recognized ranging pore pressure to 40
kPa, too. The stored elastic energy and pore pressures of silty fine sand and sandy silt are illustrated in Figure 10
and Figure 12. The elastic energy of both soils increases within early calculating steps.

David Wyeth
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The dissipative energy and excess pore water pressure during irregular loading

The calculations of irregular loading were made for Toyoura dense sand (Figure 13), silty fine sand (Figure 14)
and sandy silt (Figure 15). Each relation between the square root of dissipative energy and the pore pressures is
approximately agrees with the sinusoidal ones except the calculation of sandy silt loaded with Miyako Port
motion. The linear relations between the envelope curves and pore pressures are also observed. Figure 16 shows
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the stored elastic energy of silty fine sand loaded with Miyako Port motion. Vigorous increases and decreases of
pore pressure correspond to the decreases and increases of stored elastic energy. The elastic energy level agrees
with that of sinusoidal loading results in Figure 10.

CONCLUSIONS

The calculating method was proposed to evaluate the dissipative energy and the stored elastic energy of a soil
element during a liquefaction test. The dissipative energy is determined as continuous values and the stored
elastic energy is calculated as the difference between the shear work and the dissipative energy. The method was
applied to the results of several liquefaction element tests such as various amplitudes of sinusoidal shear stress
tests and irregular shear stress tests simulated earthquake stress motions.

A unique correlation between the dissipative energy and the pore water pressure developments is observed. This
correlation is independent of amplitudes of sinusoidal shear stress. The pore pressure buildup to 95% of the
initial effective confining stress necessitates 0.658 kJ/m3 average dissipative energy for Toyoura loose sand, 2.48
kJ/m3 for Toyoura dense sand, 5.26kJ/m3 for silty fine sand and 16.4 kJ/m3 for sandy silt. It is recognized that
easily liquefiable soil requires low dissipative energy within test materials.

There are linear relations between the peaks of pore pressures and the square root of dissipative energy at each
peak. These relations are observed ranging in the pore pressure to 70kPa in Toyoura loose sand and ranging to 40
kPa in other sands. The gradients of linear relations are proportional to liquefaction strength. The fact that the
pore pressure developments correlate to the square root of dissipative energy means the energy owing to the
negative dilatancy of sand is proportional to the dissipative energy.

In the calculations of irregular loading, each relation between the square root of dissipative energy and the pore
pressures is approximately agrees with the sinusoidal ones except the calculation of sandy silt loaded with
Miyako Port motion.

The stored elastic energy develops at almost the same time that the excess pore water pressures decreases
temporary. The stored elastic energy values are approximately proportional to the temporary decreases of excess
pore water pressure with large shear strain.
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