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SUMMARY

In this paper, a simplified one-dimensional analytical tool based on finite difference technique to
analyze reinforced concrete members under cyclic deformations is presented along with the details
of the algorithm. Relatively simple assumption of plain section remains plain before and after
bending is used. Nonlinear material properties with cyclic stress-strain relationship have been
adopted for both reinforcement and concrete to check the significance of implementation of the
various characteristics of the stress-strain relationship. Finally this tool is used to successfully
simulate a few experiment results to check the validity of this developed analytical tool.

INTRODUCTION

The numerical analysis of the behavior of the reinforced concrete members has been a subject of intensive
research in the past two decades. Several methods for the analysis are already available. Different researchers are
trying to formulate more sophisticated analytical tools for more accurate simulation of different structural
phenomenon.

Though stiffness matrix based method is used for formulating the analytical tools, some researchers have also
used flexibility based analytical methods(e.g. fiber model). These methods generally use theory of elasticity,
plasticity or progressive damage for concrete using discrete crack or smeared crack approaches. These
approaches generally attempt to simulate experimental results of reinforced concrete members under monotonic
and cyclic loading using finite element based techniques. Some of these methods involve rigorous analysis,
requiring considerably high amount of computing time and hardware requirements. However, many of these
results can be simulated using relatively simpler methods so as to reduce the computational expenses.

In this research, a simplified analytical tool based on finite difference method is developed to analyze the
reinforced concrete members under cyclic loading. Stiffness matrix based method is adopted in such way that
displacement-controlled algorithm can be implemented.

Earlier, similar methods have also been used for simulating the behavior of reinforced concrete members. Those
methods required the sectional property of the moment-curvature relationship as input. The moment curvature
relationship is generally implemented using multi-linear models with varying number of transition points and is
used to calculate the load displacement behavior of the member. For cyclic behavior of moment-curvature
relationship, various models exist, e.g. Raufaiel and Meyer model, Takeda model, etc. However, all these models
require the calculation of the envelope of moment-curvature relationships, which often depends on the level of
axial force, which is not necessarily constant. The unloading rules of these models are not dependent on the
actual material stress-strain relation.

In this proposed method, no such implementation of moment-curvature relationships is required as input. The
non-linearity  in  the  member  behavior  is taken  care  by the  direct  implementation  of the non-linear  material
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properties in the calculation of internal forces based on the current condition of stress, strain, axial force,
moment, etc. Complete stress-strain relationship of both concrete and reinforcement is implemented with full
unloading criteria.

One more positive aspects of this model is that, the effect of implementation of various characteristics of the
stress-strain curves of both concrete and reinforcement can be check with lesser computational cost in
comparison to the more sophisticated methods, e.g. 3D analysis etc.

In this research, the developed simplified method for the analysis of the reinforced concrete members is
presented in brief. The material properties with hysteric stress-strain relationship for both reinforcement and
concrete adopted in the analysis are also presented with due consideration to various phenomenon.

In this formulation, the structure is discritized into elements like parts. The applied load and the displacements,
slopes and curvatures at the nodes are taken as global variables. Here, the assumption that a plain section
remains plain before and after bending is used as the basis of calculation of internal forces. The stiffness matrix
is calculated based on the present conditions of material stress, strain, etc.

In this paper experimental results of reinforced concrete specimen under cyclic loading have been simulated to
find out the effectiveness of this model.

FORMULATION

Here a cantilever reinforce concrete column with horizontal cyclic load applied at the top is considered. The
secondary moment in the column (P-∆ effect) is neglected. At the nodes, it is assumed that plain section remains
plane during bending and the deformation due to shear force is negligible. The concrete is assumed to be a
homogeneous isotropic material with perfect bond between concrete and reinforcement.

Based on these assumptions, sectional properties are considered at the nodes as shown in Figure 1b. In this
paper, only uni-directional horizontal loading at the top of the column is considered. The column of height L is
first divided into n element with n+1 node and the section is subdivided into m strips and non-linear material
properties with appropriate stress-strain relationship are considered at these points to calculate the internal
forces. For bi-directional horizontal loading, this method can be applied by dividing the section into square
blocks, rather then strips.
Lateral load P and axial force Paxl are applied at the top of the column. Nodal variables of displacement yi,
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rotation θi, curvature φi and strain at the top of the section εti at ith node are considered. Strain at jth strip can be
defined as

ijtij y φεε −= (1)

Each strip of the section is further subdivided into parts of area Ajm according to the different material properties.
These areas are core concrete, cover concrete and reinforcement. Stress σ jm  is calculated for each of these areas

based on their material characteristics. The internal axial capacity axP , the external bending moment ( EXiM )

and internal bending moment ( iINM ) at the nodes can be calculated as follows
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Here, the Aj represent the summations for all material parts Ajm and jj y2/hz −= . Writing Eq.(2) and (3) in
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Rearranging Eq.(4),
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Substituting Eq.(6) in Eq.(5), we will get,

iaxiaxiiii PPMMPlM δ∂∂δφ∂φ∂δ )/()/( +== (7)

The nodal variables displacement yi, rotation θi, curvature φi in the incremental form can be related to each other
as follows

0=/2)+(-- 11 liiii ∆++ δφδφδθδθ (8)

0=/2)+(- y- y 11 liiii ∆++ δθδθδδ (9)

The stiffness matrix in the incremental form can be formed using Eq.(7), (8) and (9). There are n +1 variables of
displacement δyi, rotation δθi, curvature δφi at each node and δP, the applied cyclic load is taken as global
variable. There are n +1 equations from Eq.(7) and n equations each from Eq.(8) and (9). Since from boundary
conditions δφn+1= 0 and ln+1=0 at the top, Eq.7 will not be relevant at the n+1th node. Therefore 3n equations
have been taken with 3n +4 unknowns and 4 boundary conditions (at the support 01 =yδ , 01 =δθ  and at the

top 01 =+nδφ , applied 1+nyδ ). Therefore, system of equations can be solved. Even though the stiffness matrix

was not symmetric, it did not create any problem in the analysis.

After solving the nodal variables of displacement yi, rotation θi and curvature φi are calculated. At each node,
based on the calculated curvature φi, strain at the top of the section εti is calculated in an iterative manner such
that internal axial force balances with the external axial force. The gradient of the strain diagram φ is used in
calculating the moment at the section. After the convergence of internal forces, the global convergence at each
node is checked. The unbalanced moments due to internal and external forces is taken as the convergence criteria
and iterated until the convergence criteria has been satisfied.

MATERIAL MODELS

Material model for concrete

The stress-strain curves for monotonic case serves as the envelope for the cyclic stress-strain relationship. In
compression, the stress-strain envelope with parabolic behavior before the peak and linear softening after the
peak is similar to the model proposed by Kent and Park [1] is adopted. Confinement effect due to ties or lateral
reinforcement is considered by adopting more ductile post-peak softening curve.
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Where 0cε =0.002 is the strain at the peak stress, )/(8.0 01 ccficfm εε −′−= is the post peak slope controlling the

softening/ductility of the concrete and strain cfiε is the controlling parameter for this post peak slope where i=1

for unconfined concrete and i=2 for confined concrete. This factor cfiε  is dependent on the amount and the

spacing of transverse reinforcement and the strength of concrete and is calculated as mentioned in Kent and
Park [1]. In tension, linear behavior until peak has been taken and gradual degradation is adopted in post peak
behavior and is shown below:
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where tf ′  and Ec are calculated on the basis of CEB and ctt Ef /0 ′=ε .

In various experimental works, it is shown that plastic strain is accumulated for cyclic cases in both tension and
compression. However, the accumulation of plastic strain in tension is not taken in this analysis for simplicity.
The plastic strain accumulated in compression εcp is taken as the origin of the stress-strain curve in tension as if
the whole stress-strain curve has shifted to compression side. Linear unloading in the tension side is assumed.

For the cyclic behavior of concrete in compression, model proposed by Darwin and Pecknold [2] based on
experimental results from Karson and Jirsa [3] is adopted. The strategy of unloading and reloading is shown in
Figure 4. Unlike Darwin and Pecknold model, the unloading branch from the turning point is curtailed at 90%
stress level and connected to the εcp point in order to avoid zero slope for better convergence.

The plastic strain εcp is calculated by the method adopted in focal point model [4] for better numerical
convergence. Here εcp is the intersection of strain axis with line joining from the unloading point at the
compression envelope curve to the point with stress cf ′− and strain cc Ef /′− .

Material model for reinforcement

For the reinforcement, the cyclic stress-strain model adopted in the numerical analysis is shown in Figure 3. This
is a multi-linear model that deals with one-dimensional stress-strain relationship for reinforcement. This model
takes care of reinforcement hardening and bilinear unloading is implemented. In tension after yielding at
( ytytf ε, ), there is a yield plateau to the point ( 11, ytytf ε ) with a nominal slope of Es1 (=0.001Es). After this for

simplicity, the hardening is assumed to start to reach the ultimate strength in a linear manner to ( 22 , ytytf ε ) with
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a slope of Es2 in monotonic stress-strain case. This model is quite similar to multiple surface models that are used
for reinforcement in multi-dimension. Always, one line in tension and one in compression are used as reference
lines with a reference point on each of them. When the strain is between these reference points, it is considered
to be unloading. Unloading is assumed to occur elastically (Es) initially and assumed to follow slope Es4 after
reaching the surface midway between the two reference surfaces (or lines). This is assumed to take care of
various different phenomena including Bauschinger effect, etc.

Typical envelope line and a typical case of unloading and reloading are presented in Figure 3. There are two
reference lines in tension part and one in the compression part and they are shown clearly. When the stress-strain
curve travels along the tensile part, the plastic strain is assumed to accumulate until it reaches the strain of

1ytyt εε − . After that, the stress-strain behavior is assumed to harden with a slope Es2. The reference line in

tension moves up as the stress hardens. The hardening continues, till the stress-strain reaches another reference
line in tension. A typical case of unloading-reloading case is also shown in Figure 3.

The reference line in compression does not shift like the reference line in tension. It passes through compression
yield point ( ycyc f,ε ) and then takes the slope of Es3  (=0.001Es) to avoid the zero slope problem in analysis. The

different parameters adopted here in the analyses are Es = 2.1x105 MPa, 1ytε = 0.007, 2ytε =0.05, Es4=0.1Es,

ytyc ff −= .

APPLICATION TO EXPERIMENTAL RESULTS

Table 1: Material Properties of Reinforcements
Case Type fyc (MPa) fyt (MPa) fyt1(MPa) ES(MPa)

T1 & T2 D10 -420.0 420.0 500.0 21.0E5

Table 2: Details of Specimen and Material Properties of Concrete

Case No
′fc

(Mpa)

Specimen
Cross-
section

Rings
spacing

εcf1

(Unconfined)
εcf2

(Confined)
Axial Load
(N/mm2)

T1 20.0 300x150 D10@150 c/c 3.16ε0 6.65ε0 0.00
T2 20.0 -do- -do- 3.16ε0 15.0ε0 3.00
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Figure 3: Reinforcing reinforcement stress-strain model
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In this paper two experiments are considered to understand the capabilities of this developed analytical method.
Experiments were carried out on a reinforced concrete cantilever column under displacement controlled cyclic
loading[5]. The sectional details and dimensions of the specimens are shown in Figure 4. Both the specimens T1
and T2 are of same dimensions. T1 is the specimen without axial load whereas T2 is the specimen with axial
load. The axial load of 3.0 N/mm2 was applied at the top of the column as shown in Figure 4. Each cycle of a
particular magnitude was applied once and shown in Figure 5. The section details, material properties of
concrete and values of different parameters of the concrete material model used in the analysis are presented in
Table 1. The material properties of the reinforcement bars used are mentioned in Table 2.

The descretisation of the specimen into elements and the cross-section into layer is shown in Figure 4. The
specimen is divided into n=5 parts and the cross-section of the specimen is divided into the m=300 layers as
shown in Figure 1. In order to simulate member behavior and to see the capabilities of this analytical tool, the
material models are also studied. It is well-known fact that the analytical results are the reflection of the material
models adopted hence some parameters, which are very important in describing the structural behavior under
cyclic loading will be discussed and applied in this section.
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GENERAL DISCUSSION

In this section, the RC cantilever column specimen described in the previous section is analyzed and discussed in
detail to check the validity of the analytical method.

The analytical results of both the specimens showed stiffer behavior in the beginning in comparison to the
experimental results. This is the draw back and generally noticed in most of the analytical tools and is outside the
scope of this paper. The area bounded by the hysteric curve is actually the representation of the amount of the
hysteric energy released. This hysteric energy is taken here to understand the cyclic behavior of the structural
members. Since the analytical results are the reflection of the material models adopted hence special emphasis is
given to the different parameters of the material models.
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For the case of cyclic loading, reinforcement unloading/reloading branches are having major effect on the shape
and size of the area bounded by the hysteric curve. The amount of hysteric energy released can be controlled by
the application of the proper slopes of those branches of reinforcement material model and is studied here.
Firstly elastic unloading/reloading has been implemented for the simulation of specimen T1 and T2. It was found
that analyses showed much higher hysteric energy as compare to experiments. Various parametric studies were
conducted using different characteristic of the envelope curve and with different slopes of the unloading
branches of the material model. It was realized that characteristic stress-strain curve of concrete has lesser effect.
It was also realized that adopting bilinear unloading/reloading in the reinforcement material model in such a way
that the slope of unloading or reloading decreased from Es to 0.1Es from midway between the tension and
compression envelope shows nice simulation of the experimental results. This is basically to take care of the
Bauchinger effect and other phenomenon.

Figure 6 and Figure 7 show the analytical results of the implementation of bilinear unloading curve (Es4 = 0.1Es)
in comparison to the elastic unloading (Es4 = Es). Figure 8 and Figure 9 show the analytical results adopting the
bilinear model (Es4 = 0.1Es) in comparison to the experimental results. Figure 8(a) and Figure 9(a) show the
analytical results whereas Figure 8(b) and Figure 9(b) show the experimental results along with the outside
envelope of the analytical results. It is noticed that the adoption of modified bilinear model (Es4 = 0.1Es), the
shape of the unloading branches and the hysterics energy matched with the experimental results. The shape of
the load displacement diagram envelope after the yielding of reinforcement and the peak load is matching with
that of the experimental results for specimen T1 whereas in case of T2 only the peak load matched. This implies
that further attention is necessary for the T2 where axial load is present and higher confinement is expected for
the concrete stress-strain curve.

CONCLUSIONS

A simple method for analysis of reinforced concrete members has been proposed based on finite difference
technique. In this paper, the algorithm of this analytical tool is presented. Nonlinear material properties are
adopted and the effect of few parameters of the material models on the analytical results is studied. Finally using
the appropriate material parameter values, the analysis is done. The following conclusions can be made:

1.  This analytical method can predict the peak strength quite appropriately

2.  The characteristic of unloading/reloading branch of reinforcement plays prominent role in member hysteric
behavior. Nice matching between the reloading/unloading branches was observed when bilinear unloading
(Es4 = 0.1Es) is adopted. Hence it is realized that adopting a lower slope from some where in the middle is
reasonable. This phenomenon is also observed in various other cases that are not reported here.

Finally, this method is very fast and efficient method of analysis of reinforced concrete members. This method is
numerically very efficient and can be used to simulate experimental results for the better understanding of the
phenomenon occurring in the damage process. This analytical tool can help to study the effect of implementation
of various parameters of the material model. Hence, this analytical tool can also be used in a supporting role to
the finite element analysis with three-dimensional implementation, as it is difficult to check the effect of various
characteristics of the material stress-strain curve using the sophisticated methods.
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