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BENDING INDUCED VERTICAL OSCILLATIONS DURING SEISMIC RESPONSE
OF RC BRIDGE PIERS
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SUMMARY

The paper presents a numerical investigation on the behaviour of reinforced concrete bridge piers
subjected to horizontal seismic input. Scope of the investigations is to quantify the phenomenon of
bending-induced axial vibrations. The results of a set of analyses conducted on single column bent
systems indicate that flexural cracking produces, in fact, significant axial vibrations.
Quantification of the effects related to this phenomenon can be determinant for the seismic
assessment of existing bridges as well as for the design of new bridges. Likewise, performance and
design forces of bearings and other anti-seismic devices can be estimated with more accuracy,
based on the expected level of combined vertical and horizontal acceleration response on decks.
Shear resisting mechanisms should also be sensitive to these vibrations and shear failure
anticipated when a reduction in the axial contribution to the section shear capacity occurs. A
tentative equation for the prediction of this flexural-induced vertical acceleration component is
proposed based on simplified section kinematics and elastic impact analysis.

INTRODUCTION

The field evidence [Ono et al. ,1996] of the damaging effects due to axial vibrations in vertical members of RC
structures during past earthquakes, has attracted the attention of various authors. While the effects of vertical
ground motion components on buildings and bridges [Papazoglou et al. ,1996][Elnashai et al. ,1997] have been
studied, no attention has been dedicated so far to the bending induced vertical accelerations in RC members
subjected to inelastic oscillations. This type of vertical oscillations is independent of the vertical ground motion
input and can induce vertical accelerations that are comparable to the horizontal ones [Petrangeli et al. ,1997] .

Scope of the present work is to quantify these bending induced vertical oscillations due to the rocking
mechanism of r.c. bridge piers, with particular reference to systems in which the deck is made of multiple girders
supported by large cap beams. In this kind of structures, very frequent in European and Japanese highway
networks, these vibrations may have a significant effect on the general structural performance. The frequency
content and magnitude of the vertical motion associated with this effect is analyzed for different structures, with
different natural periods. Consequences on the performance of bearings is also investigated. A simplified model,
based on the cracked section kinematics, is developed to predict the magnitude of bending-induced axial
accelerations.

THE ANALYSED STRUCTURES : GEOMETRY AND DIMENSIONING

Three different structures, meant to be representative of typical prestressed concrete viaducts in seismic regions,
have been analysed. The three structures have the same 30m span superstructure and different pier heights: 6, 12
and 18m respectively. Each analysed structure is supposed to be part of a viaduct made of a sequence of equal
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spans, simply supported on piers of similar heights. The analysis of the seismic response of these structures in
the transverse direction is then carried out on a 2D schematisation, taking into consideration one pier only with
two half spans each side.

The superstructure, with a total platform width of 15.7m, is made of a 0.25m reinforced concrete slab connecting
four prestressed concrete girders as shown in Fig.1. This deck configuration requires a 11.5m wide cap beam, in
order to seat four bearings with a centre to centre distance of 3.5m. The weight of one span has been assumed
equal to 6000kN, therefore a vertical load of 1500kN acts on each bearing support. An additional weight of 600
kN  has been considered to account for the cap beam.

Dimensioning of the pier cross section has been carried out so as to obtain a normalised axial load

10.AfP g
'

c =  under self weight alone, as typical for this kind of structures ( f c
' is the unconfined concrete

compression strength and Ag is the area of the
gross section). The flexural capacity of the
pier cross section, reflecting the actual
situation of most existing viaducts, has been
dimensioned according to allowable stress
criteria. For each structure, the design
moment is computed based on a constant
response spectrum of 0.1g. The required
flexural capacities are therefore proportional
to the pier height since the total mass is
roughly the same for the three cases; the base
bending moments are computed on a
cantilever scheme, neglecting the influence of
deck torsional inertia and cap beam flexibility.
The same hollow cross-section has been
adopted in the three cases with different
amount of longitudinal reinforcing steel ρl.
Table 2 summarises the main design
characteristics.

 The first yield moment My (bending moment
at first yield of longitudinal rebars) and the
nominal moment Mn (defined here as the
bending moment at 5 times yield curvature)
are indicated to conventionally define the
mechanical properties. Shear dimensioning
of the three structures is omitted since the
investigations are focused on axial-flexural
coupling, however it is assumed that
adequate shear reinforcement is provided to
ensure a flexural dominant response when
large inelastic displacements occur.

Before analysing the nonlinear behaviour of these structures it is interesting to see the results of the modal
analysis. Natural frequencies and participating masses in x and y direction and modal shapes are indicated in
table 2 and fig.2.

When these structures are modelled with realistic flexibility for the cap beam and both vertical and rotational
masses are included to account for the vertical loads of the superstructure acting on the bearing supports, higher

Tab. 1 Results of modal analyses

Pier Height [m] ρρρρl  [%] My [kNm]
6 0.35 9667

12 0.7 12204
18 1.0 14090

Tab. 2 – Pier properties

Pier

height  [m]

Mode
number

Mass %

 X dir.

Mass %

 Y dir.

T    [sec.]

6 1 51.0 - 0.583
6 2 48.0 - 0.123
6 3 - 76.0 0.070

12 1 79.9 - 1.190
12 2 20.1 - 0.232
12 3 - 90 0.090
18 1 89.9 - 1.960
18 2 10.1 - 0.303
18 3 - 95 0.104
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Figure 1 – Geometry of the analysed structures
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modes significantly influence the global behaviour. Especially in the case of the short pier, a significant
percentage of horizontal modal mass is found in the second mode, which is of the double bending type. Concrete
cracking will therefore take place in the top and bottom sections, possibly increasing the hammering effect at

bending reversal. In the 12
and 18 metre piers instead,
the deck rotational inertia is
less significant when
compared to the pier
flexibility. The pier deforms
mainly in simple bending
with concrete cracking
located at pier base only.

THE NUMERICAL MODELS FOR NON-LINEAR TIME-HISTORY ANALYSES

The three structures have been modelled by using a flexibility-based fibre beam element developed by the
authors [Petrangeli et al. ,1999]. Each pier has been modelled using two fibre beam elements with three, four and
five integration Gauss points (monitoring sections) for the 6, 12 and 18 metres piers respectively. The number of
integration points has been selected in order to attain the same numerical precision in integrating the longitudinal
strain field in the three structures, while maintaining the same tributary length to each integration point.
The pier cap has been modelled using linear elastic elements with equivalent mechanical properties. Constitutive
models for concrete and reinforcing steel adopt state-of-the-art uniaxial stress-strain relationships based on the
work of Mander [Mander et al. ,1988] and [Menegotto et al.,1977] respectively (see also fig. 5 and 6). In the
concrete model, a crack-bridging branch has been introduced, providing a smooth transition between the tensile
and the compression branches. This feature was required in order to avoid an overestimation of the impulsive
component of vertical acceleration at crack closure as a result of the abrupt transition between the zero stiffness,
zero stress cracked state and the reloading branches to compression.

Mechanical properties of the steel have been assumed as follows: yield strength = 400 MPa, ultimate strength =
570 MPa, Young’s modulus = 200000 MPa, ultimate strain = 0.10. Mechanical properties of the concrete are:
unconfined strength = 35 MPa, confined strength = 42 MPa, strain at ultimate stress = 0.0035, Young’s modulus
= 30000 MPa, tensile strength = 2.5 MPa, fracture energy = 0.1 kN/m.

The deck horizontal mass (600t) has been placed in one node only (as indicated in fig.3) to avoid axial
(horizontal) vibrations in the pier cap beam; vertical masses have been placed instead at each beam support (150t
each) and at pier top (60t). The masses of
the superstructure are rigidly connected to
the cap beam.
The first mode natural frequencies
computed with modal analysis have been
used to quantify the viscous component of
the structural damping. A viscous damping,
in addition to the hysteretic one, has been
considered in fact by means of a mass
proportional damping factor C, where, for
elastic systems, C = 2ξωm with m the mass,
ξ the percentage of critical damping and ω
the circular frequency. A value of 3% of
critical damping has been assumed in our
case to be representative of all viscous
damping components acting within the
elastic structural response.

RESULTS OF NON-LINEAR ANALYSES

A set of non-linear time-history analyses using the general purpose F.E. code FIBER has been performed using
an accelerogram compatible with the EC8 response spectrum with PGA=0.35g as horizontal ground motion
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Figure 3 – Numerical model
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Figure 2 – Modal shapes
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input. The vertical component has been purposely ignored in a first stage, while it has been included in a second
set of analyses to evaluate the coupling effect on the pier axial response.

Under the imposed horizontal ground motion, large inelastic deformations occur in the three structures. In all
cases a plastic hinge forms at pier base, where longitudinal reinforcing bars reach (for the 6m pier) a maximum
strain of approximately 2.0%. Maximum base shears are 2500kN, 1250kN and 980kN for the 6m, 12m and 18m
pier respectively. Moment curvature cycles at pier base are plotted in fig.4. In the same graphs the corresponding
axial force time history is also reported. The largest ductilities are found for the 6m pier with a curvature
ductility µφ = 8÷9. For this pier, the inflection point is located at 0.54H (with H full height of the pier), while for

the 12m and 18m is 0.66H and 0.69H
respectively. Note that the maximum axial
force fluctuations are found for the 6m  pier
(+58% of additional compression and -35%
in axial force reduction). None of the piers
experienced steel yielding in the top section
below the pier cap beam. Concrete and steel
stress-strain histories for the base section of
the 6m pier are plotted in fig. 5 and 6.

In the 6m pier a global displacement ductility
of about 5.0 is reached, compared to 2.5 and
2.0 in the 12m and 18m pier respectively.
This remarkable difference in global damage
is due to the inappropriate strength provided
by the allowable stress design criterion and to
the flat design spectrum adopted (0.1g).
However, this result reflects the actual
situation on existing viaducts where squat
piers tend to have light longitudinal
reinforcement ratios. Maximum displacement
drifts are in a range of 0.75% to 1% of the
pier height. Maximum vertical displacements
at external bearing locations are insensitive to
the pier height and are always around 0.05m.

The maximum response of the three
structures is summarised in fig.7 (the 5%
damping elastic response spectrum  of the
accelerogram used in the analyses is also
reported). Maximum accelerations at bearing
locations are indicated for each structure as a
function of their fundamental elastic flexural
period. It can be seen that in the proposed
examples, the deck horizontal maximum
acceleration does not vary significantly with
pier height while the vertical acceleration
does, due to varying axial/flexural period
ratio as well as cap beam width/pier height
ratio.
As anticipated before, vertical acceleration
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response is particularly high for the squat pier, where a peak value of 0.9g is found at external bearing location.
Generally, bending-induced vertical accelerations decrease with increasing pier height as also confirmed by
other analyses. Vertical acceleration of the outer bearings includes in fact also a “geometric” component due to
the rotational acceleration of the pier cap beam itself. This component obviously decreases with decreasing cap
beam width/pier height ratio. The distribution of the vertical acceleration along the cap beam from pier top to the
external bearing location can be easily derived from the graphs of fig.7.

The plots of fig.8 show the acceleration response spectra (with 5% damping) of the horizontal and vertical deck
motion recorded at each bearing location and at pier top. The ground motion spectrum is plotted for comparison.
These spectra provide an idea of the frequency content and magnitude of the structural response. Their values for
T=0 correspond to the maximum accelerations plotted in fig.7 which are the ones to be used to evaluate the
maximum vertical and horizontal force transmitted between deck and piers. In fig.7, the peak below 0.2 sec. at
the outer bearing location is clearly due to the selective amplification of the first vertical vibration mode of the
pier (mode 3 in tab2). It can be seen that the response spectra of the vertical accelerations tend to be more
concentrated in a narrow band of frequencies as the pier flexural period increases, while those of horizontal

accelerations tend instead to
have a constant level of
response (i.e. frequency
independent) around 0.75g.

It can be noted from the results
discussed above that on
external bearings vertical
acceleration response is equal
or greater (up to a factor of 2
for the 6m pier) than the
horizontal one. With the ratio
between vertical and horizontal
force on bearings (Rv/H) falling
to such low values, unseating
phenomena are likely to occur.
The most significant examples
of these low values occurred
during the analysis are reported

in table 3 for both internal and external bearing in the 6m pier. Note that the vertical reaction under self weight
alone is equal to 1500kN. Response at 8.22 sec. shows instead a case where the maximum vertical reaction of the
bearings is nearly twice the static one. During the analysis the external bearing experiences a minimum ratio
between vertical reaction Rv and shear force H equal to 0.65, while the internal bearing has a minimum value of
2.26.

If the effect of the vertical ground
motion component is now introduced, a
quantification of the relative importance
of the two different sources of axial
vibrations can be made.

The analyses carried out above were
repeated again with inclusion of a

vertical motion with peak ground acceleration equal to 2/3 of horizontal peak acceleration. This ground motion
component is still compatible with the EC8 response spectrum and has the same duration and starting time step
of that of horizontal motion. In these analyses the two sources of axial vibrations are therefore taken into account
and their effects appear combined. The values are in all cases larger than the corresponding ones in fig.7, where
the ground vertical acceleration is absent, but the order of magnitude does not change. In other words, from the
‘spot’ cases examined it would seem that the predominant contribution to the vertical response accelerations
comes from the rocking mechanism, not from the vertical acceleration input.

SIMPLE MECHANICAL MODEL FOR AXIAL VIBRATIONS

An attempt to establish a closed form approximate relationship between these axial vibrations and the pier
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Tab. 3 - Forces on bearings during earthquake response

External Bearing Internal Bearing
Time (sec.) Shear Rv(kN) Shear Rv(kN)

5.23 -469 305 -469 1119
8.22 43 2639 43 1932
8.26 -572 556 -572 1500
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flexural response will be presented herein. The main assumption is that cracked sections can be treated as rigid
bodies during their motion induced by flexural response. In this idealisation the sections rotate about a point that
coincides with the position of the neutral axis. The impact of the sections during bending reversal will be
assumed elastic with initial conditions (i.e. values of velocity and acceleration) found from the rigid body motion
assumption.
Assuming that plane sections remain plane the following relation holds between the curvature χ  and axial
elongation εp for a RC section:

dkp 




 −=

2

1χε (1)

where k is a scalar parameter ( 0 1≤ ≤k ) defining the neutral axis depth (1-k)d. Let us now assume the flexural
response of a generic section be
described by a simple sinusoidal
function as follows:











=

f

max

T

t
sin)t(

πχχ 2
            (2)

with Tf being the predominant flexural
period of the pier. The section axial
deformation, according to (1), can
therefore be written:

ε χ π
p

f

t sin
t

T
k d( ) max====





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
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2 1

2

(3)

where the absolute value of the
sinusoidal function is taken since the
axial elongation is always positive.
In order to obtain simple expressions
for the velocity and the acceleration of
the axial strain (3) we assume that the
position of neutral axis is fixed (i.e. k
is constant), even though with
increasing curvature the neutral axis
tends to shift outwards (i.e. k
increases). Axial displacement, axial
velocity and axial acceleration as a
function of time have been
qualitatively plotted in fig.9.
 The velocity is discontinuous for t =
nΤf/2 (with n=1,2...). In these
characteristic points, the section is
subjected to a vertical impulse which
reverses the displacement direction,
changing sign to the axial velocity.
These points correspond to the crack
closure and the sudden shift of the
neutral axis from one side of the
section to the other (as depicted in
fig.9). These impulses are the main
cause of the vertical oscillations
observed in the analyses. Outside these
points, the section is still subjected to a
vertical acceleration as the result of
the flexural response. This component
of the acceleration, smaller than the
impulsive one at bending reversal, is
found as the second derivative of (3).
Its maximum value is :
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 This component of the vertical acceleration is negligible when compared to that due to the impulse at bending
reversal (see eq.(7)).
In order to obtain an estimate for the magnitude of this impulse, the assumption of rigid body motion must be
relaxed and the impact at crack closure treated as an elastic rebound. We assume therefore that this elastic impact
takes place in a finite time interval ∆t.

 With these hypotheses, the
impulse amplitude can be
computed as:

m∆v = ∫∆t f dt= ∫∆t m a dt

where m is the mass and f the
inertia force. The velocity
variation ∆v that takes place
during the time interval ∆t can be
set according to Fig.9 by
computing the right and left limit
of the first derivative of (3) for t →
nΤf/2 . The time interval ∆t is
tentatively set equal to one half the
fundamental axial period of the
pier-deck system (∆t =Ta /2), so
that ∆t corresponds to the
compressive semi-cycle of the pier
elastic rebound. Therefore, the
velocity variation within the
specified time interval is :
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If we assume that the impulse has a sinusoidal shape, we obtain from (5):
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where the π/2 factor is found by integrating the sinusoidal impulse over the time interval ∆t in (5).
A simple relation between the pier maximum horizontal acceleration response and the curvature maximum
acceleration can be easily obtained by assuming the flexural deformations taking place in a localised plastic
hinge at the column base. In this case we obtain that the maximum acceleration at pier top is :
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where lcp is the plastic hinge length, H the pier height and β(Tf) is the ordinate of the acceleration response
spectrum for the pier predominant flexural period. The simplification associated with this kinematic mechanism
is valid for single column bents in general and also for members that tend to oscillate in double bending, because
maximum curvature at column base is, in most cases, one order of magnitude greater than that at column top,
where yielding of steel seldom occurs.
Similarly, if the largest axial deformations take place within the plastic hinge region, as it is for the plastic
rotations, the maximum value of the impulsive (av,i) component of the pier vertical acceleration can be written
as:

(((( ))))a l
d

dt

T

T
T k

d

H
v i cp

p

t n
T

f

a

f

f

,

max

====






















====






 −−−−





====










2

2

2

1

2

ε
β

(9)

Tf

2
Tf

3
2 Tf

0 2Tf

Displacement,
Velocity,

Acceleration

Impulse
Displacement
Velocity
Acceleration

Simplified 
section

kinematics

δt Ta= 2

Tf

Figure 9 – Section kinematics

(4)

(5)



19588

A comparison between the values found with eq.(9) and the results of the non-linear analyses for the rigid deck
model are presented in the following table 3. Horizontal and vertical accelerations found from time-history
analyses are indicated with βh and βv  respectively. The flexural period of the piers Tf has been calculated by

using the secant flexural stiffness at maximum response (average stiffness). The axial period Ta instead has been
computed using the cracked elastic stiffness and the neutral axis depth evaluated at maximum response. In this
case study, both secant stiffness and neutral axis depth, were available from the results of the non-linear
analyses; for design purpose instead, they should be calculated by using the assumed structural ductility or the
maximum expected displacement, if a displacement based design approach is being used.

Tab. 4 - Numerical analysis versus Eq.(9) prediction

Pier Height ββββh ββββv Ta [sec] Tf [sec] (k -1/2) av i ββββv / av i
6 4.12 3.96 0.10 0.69 0.27 3.19 1.24

12 4.72 2.00 0.13 1.21 0.22 2.0 1.00
18 3.83 1.43 0.15 1.92 0.18 1.22 1.17

The results from table 4 seem to indicate the soundness of the assumptions used to derive equation (9) and the
capability of it to provide a correct estimate of the magnitude of these axial vibrations.
From the cases presented above it seems that little or no amplification of the axial motion is found between pier
base and pier top. However, it is important to note that the axial input found with (9) might have been
overestimated due to the assumption of section rigid body motion.
Results obtained with eq.(9) are strongly affected by the value assumed for βh(Tf). In our case this value was
given by the results of non linear time history analyses ( βh ), whereas in design it must be found from a design
spectrum based on the maximum expected ductility (i.e. behaviour factor).

CONCLUSIONS

Although experimental results are needed to confirm the predictions of the numerical study presented herein,
there is no doubt that a significant contribution to the vertical acceleration in RC piers subjected to seismic
excitation is due to the rocking mechanism. This contribution is neglected in ordinary design, based on linear
modal analysis and response spectra. The intensity of this vertical acceleration may in effect be greater than the
structural response to the vertical component of the seismic input motion. The effect of this additional motion in
the vertical direction can be particularly severe on deck bearings, which may experience the maximum
horizontal shear forces associated with very low vertical reactions providing an additional explanation for the
widespread phenomenon of bearing failure and deck unseating observed during past earthquakes.
Based on the preliminary investigations presented herein, it seems that equation (9) provides a reasonable
estimate of the vertical accelerations in bridge piers subjected to horizontal seismic input motion alone. This
equation could be used as a starting point towards the definition of a design formula for the quantification of this
additional vertical component to be used in the dimensioning of bridges in seismic areas.
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