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STRUCTURAL DAMAGE DETECTION AND PHYSICAL STATE OF FRAME
BUILDINGS

J Alberto ESCOBAR?, Roberto GOMEZ? And J Jestis SOSA®

SUMMARY

A method to detect analytically structural damage in building frames is proposed. The structural
damage is expressed as the loss of stiffness. It is assessed using the transformation matrix that
relates the initial condensed stiffness matrix of the structure and that perturbed, due to the structure
damage. Both matrices, initial and perturbed, can be obtained using the vibration modal shapes of
the structure. The theoretical location and assessment of damaged structural elements in a plane
frame due to an earthquake excitation is presented.

INTRODUCTION

Nowadays, the dynamic response of a real structure can be measured and compared with the one computed
mathematically. If no great differences are found, it is reasonable to assume that the analytical model is able to
represent the real structure. On the contrary, the theoretical model must be modified arising the question of what of
the structural parameters of the model should be modified in order to get a better representation of the real structure.
On the other hand, current techniques for measuring the dynamic properties of structures allow for a permanent
monitoring of their behavior making possible to obtain a large amount of data [Muria-Vila and Toro-Jaramillo,
1998] and to detect any change in the parameters that define the dynamic response, such as the structural stiffness.
If changes are due to deterioration or damage, the process of adjusting the theoretical models in order to get
response values similar to those of the real one is complicated.

The objective of this study is to determine the location and magnitude of damaged elements in building structures
using known vibration frequencies and modal shapes. To attain this aim the transformation matrix method [Escobar
et al., 1999] is evaluated.

STRUCTURAL DAMAGE DETECTION

In a recent study [Hassiotis and Jeong, 1995] it was established that damage detection in structures can be reduced
to the development of a mathematical model of the structure that correctly reproduce its dynamical characteristics
(modal shapes and frequency vibrations) before damage, and the updating of that model in order to reproduce the
new dynamical characteristics after damage. In that work it was also established that the first part of the problem
had produced identification procedures developed to adjust structural parameters such as mass and stiffness in order
to reproduce the measured data, and that the second part of the problem is still under development. The present
paper deals whit the latter part of the problem.

To establish the combination of structural changes that must be made to adjust the structural model to new
values of the known modal configurations and vibration frequencies, several methods have been developed
[Stubbs and Osegueda, 1985; Lin, 1990; Ricles and Kosmatka, 1992; Peterson et al, 1995; Ferregut et al, 1995;
Kahl and Sirkis, 1996; Sohn and Law, 1997, among others]. The transformation matrix method, proposed in the
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present work is based on the relationship between the terms of the condensed stiffness matrix of two and three-
dimensional frames, and the stiffness reduction of the structural elements.

THE TRANSFORMATION MATRIX METHOD

The static condensation of the degrees of freedom of the global stiffness matrix [K] of a structure produces a
condensed stiffness matrix [ K 1= [T]"[K][T], which represents a geometric transformation of the global stiffness
matrix [Ghali and Neville, 1989]. In this equation [T] is the transformation matrix, and is a function of the
primary and secondary degrees of freedom of the global stiffness matrix.

On the other hand, the global stiffness matrix of a plane frame is calculated as the contribution of the stiffness
matrices, in global coordinates, of each one of its structural elements. Considering each element as a
substructure, the stiffness matrix [Kg]; of the j-th plane frame corresponding to a damage state can be written as

[Kd]j :rf(l_dkiXK]ij )

1=1

where nej is the number of elements or substructures in the frame; dk; is a non dimensional parameter that
represents the decrease in the contribution of the stiffness matrix of the i-th element to the global stiffness
matrix (0 < dk; < 1); [K];; is the global stiffness matrix of the i-th element, of the j-th frame without damage. The
term (1-dk;) allows to determine damage states in the i-th substructure, which are defined as those states for
which the value of dk; is greater than a specific value, normally zero. Developing the previous expression it is
obtained

[kl =31y - S ok{ @

Because the first sum of this equation corresponds to the original global stiffness matrix [Ky];, of the frame
without damage, it can be written

[Kal, =[], -3 0l ®

This equation shows that the global stiffness matrix, corresponding to a damage state, can be computed as the
difference between the global stiffness matrix of the structure without damage, and a matrix containing elements
whose magnitude has been modified as a consequence of structural damage. The lateral stiffness matrix

[Kd ] j corresponding to a damage state of the frame is calculated as

[Kd]j :[Td]E[Kd] j[Td] i 4)

where [T]; is the transformation matrix associated to the damage state of the j-th frame. For a three-dimensional
model of a building structure, to compute structural damage using the stiffness matrix that corresponds to the
primary degrees of freedom (rigid body displacements of the slabs), obtained from the stiffness matrices of the
plane frames that compose it (coupled plane frames), the procedure is as follows:

The global stiffness matrix of each frame is computed. The global stiffness matrix corresponding to a damage
state in the j-th frame is

[Kd]j :[st]j _gdkij[ K i ®)

where dk;; is the stiffness degradation of the i-th element of the j-th frame. The lateral stiffness matrix of each
damaged frame and the transformation matrices associated with a damage state are computed from the global
stiffness
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[Kd]j :[Td]E[Kd] j[Td] i (6)

Substituting equation (5) in (6), it is obtained

[Kel, =TT [T, - ”Ze"dki[ IR o

Using compatibility conditions [Ghali and Neville, 1989], the local lateral stiffness matrix of the j-th damaged
frame is transformed to the global coordinates system. In this reference the displacements transformation matrix
[C]; relates the lateral degrees of freedom of the j-th frame to the primary degrees of freedom of the three-
dimensional structure; thus, applying this procedure to equation (7)

- nej
el [Ka]sle]; =[Td Trd [Tl [ & —Z a B T K T ] ®)
=
For a damage state, the stiffness matrix of the three-dimensional model of the structure is obtained adding the

lateral stiffness matrices of each frame associated to the global displacements. This is

Nm n

[m]:”i[cn[nnm] RIS S ad 80K e ©

where Nm it is the number of frames in the structure. In this equation, the double sum represents the loss of
global stiffness of the structure as the contribution of all the elements of each frame. It is convenient to change
the double sum such that the contribution of all the elements of the structure is taken into account. Thus, for each
structural element, no matter it belongs to one or more frames, a unique factor dk will be associated. Equation (9)
is transformed as

[Kta) = “Zm[cmnr,-[ «JT[d ;- Z dkr“zj B[ K H e, 10

where Nr is the number of elements in the structure. Making transformations

K] = ”Zm[c]z[nn[ «dTI[ ¢, )

[, = J_Ngj[cnhd]z[ dJTl ¢, (12)

rOdj

where [Ky] is the original condensed stiffness matrix of the structure without damage; [T<d]r is the stiffness

contribution of the r-th element of the structure, obtained adding the stiffness of all the frames that include the
element. Substituting equations (11) and (12) in (10) it is obtained

] = e ] - 3 o [k, 13

From this expression it is possible to establish a linear system of equations writing an equation for the t-th term
different of zero of each matrix. In matrix notation this idea is expressed as

{ktee} ~{ita} =[5, {a (14)
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where [S,] is a matrix formed by the k o terms. The displacement transformation matrices are independent of the
damage state of a frame. As initial approximation for the solution of equation (14), it can be considered that the
transformation matrix corresponds to the non-damage state.

The condensed stiffness matrix corresponding to the known vibration frequencies and modal shapes can be
adjusted using the Baruch and Bar Itzhack equations [Baruch and Bar Itzhack, 1978]. The condensed stiffness
matrix can have terms with zero values [Sosa et al., 1998], therefore, the number of equations is a function of its
order, of the connectivity of the structural elements and of the selection of the structural degrees of freedom.
Thus, to obtain the theoretical damage state of a structure, it is necessary to establish the specific conditions of
the problem that include the elimination of equations and/or unknowns, as well as the modification of the
damage interval, and to follow the above developed procedure [Escobar et al., 1999].

It is worth to mention that the stiffness contribution of each structural element, obtained using equation (10),
considers implicitly that the degradation of its stiffness is the same in the local reference systems of the frames
and to those which belongs to the elements. However, an element common to two frames (normally orthogonal)
such as a column can present different degradation stiffness in two directions [Wilson et al., 1995]. To consider
this effect with the proposed methodology, it is necessary to change from the location of damage in each
element, to the location of damage in the local directions of each one of them.

APPLICATION

The proposed methodology to locate and assess structural damage was applied to the ten-storey reinforced concrete
building show in fig 1. It was designed using the Mexico City Building Code [NTC, 1987] considering soil-
structure interaction effects. Its properties were selected in such a way that its fundamental vibration period was
equal to 1.0 s. To evaluate the damage state of the frame subjected to seismic loads, it was excited with real
earthquakes recorded in Mexico City: September 19, 1985 (SCT-85), April 25, 1989 (SCT-89), and September 14,
1995 (SCT-95); and with the simulated earthquake records [Grigoriu et al., 1986]: AX15, AX39 and AX120.
Characteristics of these records are shown in fig 2. These records were selected in order to get an idea about the
effect of high and middle magnitude earthquakes on the frame structure.

To carry out the non-linear analysis of the structural models, after which the dynamic characteristics of the
damaged structure were computed, the program CANNY-D [Li, 1995] was used. To simulate the non-linear
behavior of the structural elements, the tri-linear Takeda model with stiffness and strength deterioration was
utilized. In order to increase the correspondence between the theoretical model and the real structure, rigid zones
in the elements ends and shear deformation were included in the analytical model. To simulate soil-structure
interaction, additional springs in the model supports were added.

In figures 3 to 5, the fundamental vibration period history, maximun storey drift, structural damage after the
earthquakes, and structural damage estimated for the frame subjected to the earthquake records are presented. In
general, it can be seen that damage computed values in the structural elements are consistent with the earthquake
magnitude; the frame subjected to the SCT-85 record presents the greatest damage values in the structural
elements. For real earthquakes, results obtained show the effect of strong column-weak beam target in the
current seismic design philosophy of the [NTC, 1987]. In these cases, the damage distribution in the structure
shows the greatest values for the beams than for the columns in the same storey, and the maximum computed
damage value is 70.5%. All of the simulated earthquake records, cause practically same damage values to the
structural elements of the building frame.

CONCLUSIONS

In this paper, the transformation matrix method to locate and estimate structural damage in structural elements of
frame buildings using known modal shapes and vibration frequencies, has been proposed and evaluated. The results
obtained show that the maximum computed damage values, when the frame was subjected to real earthquake
records, are consistent with the maximum stiffness degradation observed in reinforced concrete structures, around
70% [Sakai et al., 1989], and between 0.3E.l, and 0.8El, for columns [MacGregor, 1993], where Ecly product is
the flexure stiffness, E; is the elastic modulus of concrete and 4 the inertia moment of the original cross section.
The structural response is sensible to the uncertainties about the structural parameters and to the soil-structure
interaction effect for structures built on soft soil. These parameters should be taken into account through the
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stiffness matrix in order to get a realistic estimation of the dynamic characteristics of structures that are the basis for
the proposed damage detection methodology.
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Figure 1. Frame studied
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Figure 4. Computed damage using the proposed method
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