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INTERACTION OF NONLINEAR RESPONSE BETWEEN PIER AND ISOLATOR
IN SEISMICALLY ISOLATED BRIDGES

Y NARIYUKI1,  K HIRAO2,  T SAWADA3 And  K KONDO4

SUMMARY

This paper deals with the nonlinear interaction between pier and isolator in seismically isolated
bridges subjected to extreme earthquakes. Isolated bridges with RC pier and Lead Rubber Bearing
(LRB) are modeled as a 2DOF system. In particular, the investigation focused on the effect of the
primary structural parameters such as yield strength ratio on the displacement ductilities of both
pier and isolator. Further, to identify the range of yielding strength ratio as all the restrictions on
some typical nonlinear responses of isolated bridges under severe earthquakes are satisfied, a
practical procedure using the contour diagrams for those responses is introduced.

INTRODUCTION

A lot of seismic isolation systems have been developed in many countries since the early 1970s because of their
effectiveness in reducing earthquake design force. This force reduction is basically based on increasing both the
period of vibration and the energy dissipation capacity of a structure. In Japan also, especially since 1995 Kobe
earthquake, the seismic isolation design has been extensively adopted for new road bridge construction and
many existing road bridges has been seismically retrofitted by installing seismic isolation devices. Though it is
desirable that the responses of the piers of seismically isolated bridges are linear during a design earthquake,
there is every possibility that the piers behave nonlinearly during an extreme earthquake as well as the seismic
isolation devices. In this study, a wide variety of parametric analyses have been carried out in order to elucidate
the nonlinear interaction between the isolation device and the pier. To this end, an example of the procedure to
identify the effective ranges of some main structural parameters by overlapping contour diagrams as satisfy the
restrictions on some important nonlinear responses of seismically isolated bridges under strong earthquakes is
introduced.

ANALYTICAL METHOD

Seismically isolated bridges in which the lead-rubber bearings (LRB) are installed between the superstructures
and the RC piers are modeled as a two-mass shear system with rigid foundation. A non-dimensionalized form of
equations of motion for this system is developed help identify structural and isolator parameters which influence
system response.
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Structural Idealization

Figure 1 shows the seismically isolated bridge that is
modeled as a two-degree of freedom (2DOF) system
with  the rigid foundation and its deformations. In
Figure 1, m1 and m2 are the masses of pier and
superstructure respectively, c1 and c2 are the damping
coefficients of pier and isolation device respectively, k01

and k02 are the initial stiffnesses of pier and isolation
device respectively, x1 and x2 are the structural
displacements of pier and isolation device respectively,
y2 is the relative displacement of superstructure to the
foundation, and xG is the ground displacement. Non-
isolated bridges can be represented as 2DOF systems
with infinitely large values of the initial stiffness and the
yield strength of isolation device.
The hysteresis models of the pier and the isolator follow
the Q-hyst and Bilinear models shown in Figures 2 and 3, respectively [Saiidi, 1982]. In these figures, Q1 and Q2

are the restoring forces of pier and isolation device respectively, Qy1 and xy1 are the yield restoring force and
displacement of pier respectively, Qy2 and xy2 are the yield restoring force and displacement of isolation device
respectively, and γ1 and γ2 are the ratios of the post yield stiffness to the initial stiffness of these models
respectively.

Equation of Motion

Assuming that the restoring force-displacement relationships of both piers and isolators are linear within a short
time, the equation of motion of two-mass shear systems like that shown in Figure 1 can be written as

where [m], [c] and [k] represent the mass, damping and stiffness matrices respectively, { y }, { y } and {y} are
the acceleration, velocity and displacement vectors respectively, and {u} is the load vectors.
Equation (1) represents the equation of motion for the relative displacements of the masses to the foundation.
By using a transform matrix [D], Equation (1) can be transformed to Equation (2) which is the equation of

motion for the relative displacements (x1, x2) of both stories [Nariyuki, etc., 1997].

where { x }, { x } and {x} are the relative acceleration, velocity and displacement vectors respectively, and [C]
and [K] represent the diagonal damping and stiffness matrices. For convenience to use in MDOF time

Figure 1: 2DOF model of seismically isolated
bridge
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Figure 2: Q-hyst model of force-displacement
relationship of piers
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Figure 3: Bilinear model of force-displacement
relationship of isolators
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integration analyses, the damping matrix [C] is assumed to be proportional to the initial stiffness matrix [K0] .
In order to help generalize the results of any analysis performed on this idealized system, Equation (2) will be
normalized in terms of the product of the mass, m1, and yield displacement, xy1, of pier [Nariyuki, etc., 1997].
The normalized equation of motion for the 2DOF system can then be written as

where [α] and [β] are the normalized diagonal mass and stiffness matrices which have the mass and stiffness
ratios, α=m2/m1 and β=k02/k01, respectively as a element. In Equation (3), [ν] is the elasto-plastic stiffness
matrix whose elements are the ratios of the stiffness at time t to initial stiffness of each story, {υ} is the vector
whose elements are υi=ui /Qyi ,(i=1,2), h is damping factor of the first mode, η is the ratio of the predominant
circular frequency of input waves, ωp, to the first-mode natural circular frequency, 1ω0�, ρ is the ratio of 1ω0 to
the natural circular frequency, ω01, of piers, η0 is the ratio of the first-mode natural period of an isolated bridge to
that of a non-isolated bridge with same pier and superstructure. And also { x } represents the relative
displacement vector whose elements are the relative displacements, x1 and x2, divided by the yield displacements,
xy1 and xy2, of each story respectively, and { x } and { x } are the relative acceleration and velocity vectors
respectively, [ξ]is the matrix whose elements are yield strength ratio ξi=xyi/xy1 (i=1,2). Further, in Equation (3),

Gz  is the acceleration normalized in terms of the peak ground acceleration maxGx , and RI is the input intensity
ratio, which represents the ratio of the inertial force of bridges assumed to be rigid to the yield restoring force,
Qy1, of piers as

From Equation (3), it can be seen that the seismic responses of structures like that shown in Figure 1 are
governed by the nine structural parameters as

1) Tp : Predominant period of input ground motions
2) RI : Input intensity ratio
3) h : Damping factor in the first mode
4) T0 : Elastic natural period of non-isolated bridges
5) 1T0 : Elastic first-mode natural period of isolated bridges
6) α : Mass ratio (m2 /m1)
7) ξ : Yield displacement ratio (xy2/xy1)
8) γi : Elasto-plastic stiffness ratio (i=1,2)
9) Q  : Yield strength ratio (Qy2/Qy1=βξ)

Equation (3) can be solved numerically for the normalized relative displacements, {x}, given an earthquake
record ( Gx (t)) and the structural parameters mentioned above.

Equilibrium equation of energy response

The equation of motion (Equation (2)) for an isolated bridge excited by a ground acceleration can be rewritten
in energy form by multiplying each term by the relative velocity vector {x} and integrating over time as

where the terms on the left-hand side in this equation can be regarded as kinetic, damping and strain energy, WKi,
WDi and WHi (i=1,2), respectively and the term on the right-hand side represents input energy, Ei (i=1,2). The
strain energy of each story is the sum of elastic and hysteretic energies. At the end of seismic response, the
kinetic and elastic energies vanish and WHi (i=1,2) represent the hysteretic energies which are strongly related to
seismic damages to isolated bridges.
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Damage index

In this study, displacement ductilities (µDi, i=1,2) defined as Equation (6) are utilized to evaluate the seismic
damage to piers (i=1) and isolators (i=2).

where |xi|max and xyi are the maximum and yield displacements respectively of i-th story as shown in Figures 2
and 3.

PARAMETRIC INVESTIGATION ON NONLINEAR INTERACTION BETWEEN PIER AND
ISOLATOR

The nonlinear response analyses of isolated
bridges with the values of parameters listed in
Table 1 were carried out. Though the practical
range of yield strength ratio Q may be between
0.1 and 1.0 at the widest estimate, in order to
grasp the trend of the effect of Q on the
damages to piers and isolators. The intensity of
input accelerations is represented in terms of
input intensity ratio RI as mentioned above. In
seismic response analyses, the values of RI are
adjusted as the displacement ductilities µD of
non-isolated bridges with the same pier and
superstructure as those of isolated bridges are
equal to the required values for instance, µD=6.0 as shown in Table 1. The non-isolated bridges are represented
by assuming that both stiffness and yield force of isolators are approximately infinity. In this study, three
different ground motion records, i.e. Kobe, Hachinohe and El Centro records, were utilized as input waves.

Effects of Yield Strength and Displacement Ratios on Damages to Pier and Isolator

Figure 4(top) shows Q -µD1-ξ relationships and Figure 4(bottom) shows Q -µD2-ξ relationships for Kobe
record. It can be seen that, regardless of the values of ξ, µD1 is approximately equal to µD(=6.0) for Q  greater
than 1.0 and about 1.4 for the Q  less than 0.1. The isolated bridges in the former may be equivalent to non-
isolated bridges and those in the latter may be equivalent to only pier structures. It is also apparent that the
damages to piers and isolators tend to increase with decreasing the yield displacement ratio ξ under the condition
that Q  is constant and Q -µD1 curves plotted for ξ greater than 0.3 agree with each other as the same as Q -µD2

curves. It may be possible to identify the primary parameters such as yield strength ratio considering the balance
between the damages to pier and isolator.

Effects of Natural Period of Non-isolated Bridges on Interaction of Nonlinear Response

Figure 5 shows the effects of natural period T0 of non-isolated bridges on µD1 and µD2. It can be seen that the Q -
µD1 curves plotted for T0 longer than 0.4 (sec.) agree within the range of Q  greater than about 0.5 and the values
of µD1 for T0 shorter than 0.4 (sec.) exceed µD(=6.0), while all Q -µD2 curves are almost identical to each other in
the range of Q  greater than 0.5.

Effects of Damage to Non-isolated Bridges on Interaction of Nonlinear Response

As shown in Figure 6, if the value of µD is less than 6.0, µD1 is larger than the corresponding µD in a  range of
Q , i.e., the ranges of Q  greater than 0.55 and 0.75 for µD=2.0 and 4.0 respectively. This may suggest that it is
relatively difficult to determine the effective range of Q  for isolated bridge with relatively smaller µD . It is also

Table 1: Fixed value of each parameter in Figures 4-7

Parameters Fixed values

Damage to non-isolated bridge ƒ ÊD 6.0

Mass ratio ƒ ¿ 2.0

Elasto-plastic stiffness ratio ƒ Á2 0.15

Yield displacement ratio ƒ Ì 0.5

Yield strength ratio Q 0.01 1̀0.0

Natural period of non-isolated bridge T0 (sec) 0.60

Damping factor h 0.05

�
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Figure 4: Effects of yield strength ratio on
damages to pier and isolator

0.01 0.05 0.1 0.5 1 5 10
0

2

4

6

8

ƒ
Ê D

1

Q

0.01 0.05 0.1 0.5 1 5 10
0

20

40

60

80

ƒ
Ê D

2

 ƒÌ=0.1
 ƒÌ=0.3
 ƒÌ=0.5

 ƒÌ=0.7
 ƒÌ=0.9
 ƒÌ=1.1

Q

Figure 5: Effects of natural period of non-
isolated bridge on damages to pier and
isolator
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Figure 6: Effect of the damage level of non-
isolated bridge on damages to pier and
isolator
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Figure 7: Effects of the difference of input
ground motions on damages to pier and
isolator
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seen in Figure 6 that Q -µD1 curves almost come in contact with each other at Q  of about 0.4 and µD2

correspond to this Q  represents one of the maximum value regardless of µD . Further, within the range of Q
between this value and a value as µD1 almost reaches to the corresponding µD, µD1 and µD2 tend to increase and
decrease linearly with increasing Q  respectively.

Effects of Deference of Input Waves on Interaction of Nonlinear Response

As seen in Figure 7, the curves plotted for El Centro and Hachinohe records are very close and the curve for
Kobe record gives smaller values in both top and bottom figures. This means that isolators such as LRB are more
effective in protecting isolated bridges subjected to impactive earthquake ground motions with relatively shorter
predominant period such as Kobe record.

IDENTIFICATION OF ALLOWABLE RANGES OF PARAMETERS USING CONTOUR DIAGRAMS

In general, it is difficult to determine the characteristics of isolation devices due to a number of restrictions on
responses of isolated bridges subjected to strong earthquake motions. A method for identifying the effective
range of the main structural parameters of isolated bridges using contour diagrams is presented here [Megawati,
1998].

Hypothetical Restrictions on Some Structural and Response Parameters

It can be desirable that the primary responses of isolated bridges under severe earthquake ground motions will be
less than the corresponding least upper bounds respectively. In this study, we hypothetically imposed the
restrictions on one structural and four response parameters as follows:

1)The ratio of the elastic first-mode period of isolated bridges to the elastic period of non-isolated bridges
   1T0/T0�2.0
  ( In the Japanese design manual for base-isolated highway bridges, it is stipulated that this ratio is greater than

about 2.0.)
2)The displacement ductility of piers µD1�1.0
  (This means that there are no seismic damages to piers.)
3)The displacement ductility of isolators µD2�8.0
4)The ratio of the hysteretic energy of isolator to that of isolated bridge WH2/(WH1+WH2)×100�90%
5)The ratio of the residual displacement uBR to the design displacement uB  uBR /uB×100�10%
  (In the Japanese design manual for base-isolated highway bridges, it is stipulated that this ratio is less than

about 10% [Ministry of Construction, 1998]. In this study, it is assumed that uB is equal to |x2|max.)

Contour Diagrams for Parameters with Restriction

The energy response analyses of isolated
bridges with the structural parameter values
listed in Table 2 were carried out for Kobe
record (NS, 1995). Based on the analytical
results, the relations between yield strength
ratio Q  and natural period T0 of non-isolated
bridges for each parameter mentioned above
are shown in Figures 8 a)-e) respectively.
These figures were drawn through the
graphic software WSCNT developed for
contours. In these figures, the areas covered
with slanted lines indicate the allowable
combinations of Q  and T0 for the restriction
on each parameter. It appears from these
figures that the contour lines except for 1T0

/T0 are relatively complicated.

Table 2: Fixed value of each parameter in Figures 8 a)-e)

Parameters values
Damage to non-isolated bridge ƒ ÊD 6.0

Mass ratio ƒ ¿ 2.0
Elasto-plastic stiffness ratio ƒ Á2 0.15

Yield displacement ratio ƒ Ì 0.5
Yield strength ratio Q 0.05 1̀.00

Natural period of non-isolated bridge T0 (sec) 0.1 1̀.0

Damping factor h 0.05

�
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Figure 8: Contour diagrams for parameters with hypothetical restriction
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An Example of Allowable Region of (T0, Q ) obtained by overlapping Contour Diagrams

In order to obtained the allowable region of (T0, Q ) which satisfy all the above-mentioned requirements,
Figures 8 a)-e) were overlapped on a personal computer. Figure 9 shows the allowable region of (T0, Q ) under
all the restrictions assumed here. It can be seen that in this case the allowable area is relatively narrow and
almost determined from the restrictions of µD1 and µD2. If there is no allowable regions, the restrictions on some
parameters should be reasonably relaxed

CONCLUSIONS
The displacement ductilities of pier and isolator of isolated bridge increase and decrease respectively with
increasing the yield strength ratio in broad perspective. It may be possible to design the isolated bridges as the
arbitrary damages to both pier and isolator are allowed for extreme earthquakes. The larger the displacement
ductility of non-isolated bridge piers, the more effective the isolators are in reducing the displacement ductility
of isolated bride piers. Furthermore, the isolator is more effective for more impactive earthquake motion such as
Kobe record. It can be also seen that the utilization of contour diagrams on computer is very useful to identify
the range of structural parameters which satisfy some restrictions on the nonlinear responses of isolated bridges.
Through this study, a two-step design procedure for seismically isolated bridges may be considered as
1) First, a non-isolated bridge with some displacement ductility of the pier for a design earthquake ground
motion is preliminarily designed, 2) The parameters of isolator are then determined as the isolated bridges satisfy
the restrictions on the damages to pier and isolator. This way may makes the assessment of effectiveness of
isolation easy and be applicable to the retrofit of existing bridges.
At the moment, the analytical results obtained from this study have been limited. Additional research is needed
to more fully evaluate the nonlinear interaction of isolated bridges for a wider range of ground motion and
structural parameters.
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Figure 9: An example of allowable region of (T0 , Q )
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