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AVERAGE AMPLIFICATION FACTOR OF SH WAVESIN IRREGULARLY
LAYERED MEDIA

Hidenori MOGI* And Hideji KAWAKAM 2

SUMMARY

The effects of subsurface irregularities on the amplification char;ctcristics have been widely rec-
ognized as an important factor. However, the varicus studies based on numerical analysis have
shown the variability of the response against the incident wave field. To estimate the expected
amplification effects of subsurface irregularities without any consideration of the seismic source,
the average amplification factor has been introduced. Further, to demonstrate the validity of the
average amplification factor, it has been applied to the ground model of Kobe City and compared
with the amplification factors due to one-dimensional multiple reflections and a plane wave inci-
dent. From these results, it has been concluded that the average amplification factor can represent
a measure of amplification effects of subsurface irregularities in the case when the incident wave
field is unpredictable.

INTRODUCTION

The effects of subsurface irregularities on the amplification characteristics have been widely recognized as an
important factor. To illustrate this effect, various studies based on numerical analyses such as the boundary
element method have been performed. These results show us the complexity of the surface response and its
variability against the incident wave field. Considering these phenomena, if the incident waves are predictable
with some degree of precision, the surface response can be estimated by using numerical analyses. However, duc
to difficulties in predicting a faulting process, these analyses are valid for few cases.

From this point of view, we have introduced the average amplification factor to estimate the expected ampli-
fication effects of subsurface irregulariiies without any consideration of the seismic source. The average amplifi-
cation factor has been defined as the ratio of the average spectral amplitude of surface motion to that of incident
waves at the bedrock boundary. The average spectral amplitude of incident waves at the interface has been for-
mulated under a stochastic assurnption that the incident wave field consists of plane waves in all directions with
random and mutuaily independent amplitudes. Transfer functions from the interface to a ground surface have heen
estimated from the boundary element method.

To demonstrate the validity of the average amplification factor, the ground model of Kobe City has heen used.
For the purpose of comparison, both the onc-dimensional amplification factor based on the multiple reflection
theory and the amplification factor to an incident plane wave have also been estimated. The comparisons have
been made both in a frequency axis with fixed surface locations and in 4 space axis with fixed {requencics.

These comparisons have shown that the plane wave amplification factors have variability against the changes
of the incident angles, observational locations and frequencies. On the contrary, the average amplification shows
stability against those changes and has the shape approximately consistent with the envelope of the plane wave
amplification factors. From these results, it has been concluded that the average amplification factor can rep-
resent a measure of amplification effects of subsurface irregularities in the case when the incident wave held is
unpredictable.
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Figure 1: Two-dimensional coordinate system

2. BOUNDARY ELEMENT METHOD

2.1 BOUNDARY INTEGRAL EQUATION

We consider a two-dimensional ground model consisting of J elastic layers as shown in Fig.l. Displacements of
SH waves with time harmenic dependence satisfy the Helmhortz equation

{Vz—i-k%j} u;(X;w)=0, i=12,....J (1
where u; (X ; w) is a displacement at arbitrary point X = (z, z) in the j-th layer, w is the circular frequency, 3; is

the shear wave velocity and kg, is the wave-number of the § wave given by kg, = w/8;.
From Eq.(1). the following integral equation can be obtained,

1 X =1
~ui(X) + v.p. f @Y, X) uy(Y) dl(Y) — / W (Y, X) ¢;(Y)dI(Y) = ”( ) U= 2)
2 r, T, (122
where X and Y are points on the boundary I';, v.p. indicates a Canchy principal-value integral, v{x) is the

dispacement of the wncident wave, and g{X) 15 a gradient of 2(X) in normal dircction i, The fundamental
solutions u* (Y, X) and ¢* (Y, X) are given by

* i F
(Y. X) = -2 H® (ks 7)
Ou (Y’. X) Zk,@ {2) or
,.' ——‘T = o ra ] — 1
G X) an(Y) H ko, m) 5oy ()

where r is the distance between X and Y, and H,SZ) (-) is the Hankel function of the second kind of order »[Brebbia
and Walker, 1980].

2.2 DISCRETIZATION OF BOUNDARY INTEGRAL EQUATION

For the numerical solution of the boundary integral equations (2), the boundaries I'y, (7 = 1,...,.J) are divided
into N; elements [, (k = 1,..., N;). We assume that (Y} and ¢(Y') are piecewisely constant on the bound-
aries, which can be expressed as nodal boundary values

u;(X) = {u;(X1),. o ui{ XN} gi(X) = {g(Xa), . (XN, )

where X, is the midpoint of the boundary element T';;. Using the nodal values, the boundary integral equauons
(2) can be discretized as

Xk')+2u:(ﬂ)f ¢} (Y, Xiw) d0(Y)— Zq;,(Yk)f 3Y X)) dT(Y) = {‘“‘X‘f) vsa ®
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Eq.(5) can be written in following simultaneous equations

v (j=1) '
H’u"_chf'z{ﬂ (i > 2) (©)

where the coefficient matrices H and G are from integration in Eq.(5). A twelve-point Gaussian numerical
quadrature was used for computing the components of the matrices except for the diagnoal ones. The diagonal
components of H vanish due to the term dv/8n{Y) in Eq.(3), and for (7 it was analytically determined after
expanding in series.

2.3 BOUNDARY ELEMENT MATRIX FOR LAYERED MEDIA

Let the k-th node in j-th layer and &'-th node in j'-th layer are in contact. Continuity conditions that ought (o be
satisfied across the interfaces for displacements and shear siresses respectively, are

wik=ugp , Tig=— Tip N

where ;. is the abbreviation for 1, (X ), and T is the shear stress given by Ty = p; ¢;(X%). By using Eq.(7),
Eq.{6) can be expressed as

SRR ®

where the matrix A is an assembly of H; and G;/u; for all 5.

3, AVERAGE AMPLIFICATION FACTOR FOR THE GROUND
WITH IRREGULAR SUBSURFACE TOPOGRAPHY

3.1 RESPONSE FUNCTION

To derive the response functions of the ground, the inverse relation of Eq.(8) is used.

(3)-+(:)

From Eq.{9). the displacement of the &£-th node (assumed to be a surface node here), can be cxpressed as

T
U = {Pkl,- s Pkns - - :pkN}{”]:* s Pn “1UN} = Pt (10)

where pi,,, (n =1, ..., N) are coefficients of the displacements of incident wave v, (n = 1,..., N), taken from
the k-th row of the mairix A 1. The coefficient Pir, cOrresponds to the response function of the &-th node to the
displacement of the incident wave at the n-th node, including the multiple reflection effects.

3.2 AVERAGED AMPLIFICATION FACTOR
Using Eq.(10), the power spectrum at the k-th node can be expressed as
Sk = weui = p Vpf : (n
where * and 7 indicate the complex conjugate and conjugale transposc respectively. Vis the matrix of cross-
spectrum of the incident wave at the bedrock-deposite interface, defined by
Sho... Sl
V vt = o : (12)
Sk - Shw
where  indicates quantities of the incident wave.

Next, the displacement of the incident wave v, is expressed as a superposition of plane waves with various
incident angles,

K

Un = ) arexplifetn +ivezn) - (3
=1
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where £ and v, (£ = 1,. .., K)are the wave-numbers in the z- and z-directions, respectively. Using the incident
angle @;, these wave-numbers can be given by

£ =kp, sinfy, ¢ = kg, cosby. (14)

In this study, &; are assumed to be at equal intervals in the range of -7 /2 to 71/2.
The complex amplitudes a, are assumed to be zero-mean and mutually independent random variables:

E(a) =0, E(aga;,):{g éﬁ;ﬁ:g 6=, . . K (15}

where the variance v is assumed to be identical for all incident angles 8;. The cross-spectrum between the
displacements of the incident wave at the n-th and n'-th nodes can be expressed as

ala{‘ e ala}‘(
S = vl —eqaa’ell —e, : : el (16)

Qyay ... aKay
where e, and a are respectively K -dimensional row and column vectors given by
e, = {exp(i&1Ta+iv1Za)s-. . eXp(ieTn+ivezn)s ..., exp(ilrTn+ivEzn)} (7
a = {an....a....ax}%. (18)

The components of the matrix aa® will vanish by averaging except the diagonal ones because of the properties
shown in Eq.(15). The average cross-spectrum can be given by

K
E(8.,) =E(wmu}) =« Zexp{i ElTn—Tn ) +ivelzn—20)}, mu' =1,... N. (19
=1

Substituting n’ = n into Eq.(19), we get _
E(§! y=Ka, n=1,...,N, (20

the power spectra of the incident wave become identical in the sense of average.
Averaging Eq.(11) and using Eqgs (16) to (20), the relationship between the average power spectra at the
surface and those of incident wave at the bedrock-deposit interface can be derived as

E(S:) = E(S] ) R} (21
where
En ... En
R, = p| . |pof (22)
Exy ... Enn
1 K
Enne = K g exp{ige(Tn—Tn ) +ivelzn — 2nc)} - (23)

Since the coefficient 1y in Eq.(21) gives a measure of amplification in the sense of average, we will call this as
the average amplification factor here. Also from Eqs (19), (207 and (23), the following relationship can be found:

E(Spn) = E(S5:) Eanr - (24)

As shown in Eq.(24), E,,.- corresponds to the coherence function of the incident wave, and will be called as the
average coherence function here.

It is worth mentioning that the surface response is affecied by the coherence of the incident wave field as
well as the response function, because V' in Eq.(11) depends on the ccherence. Further, as Eq.(23) shows, this
effect is that the large values of the average coherence magnify the changes of the response function in the surface
response. Considering that the response function depends on the frequency and the observational location, it can
be understood that the their changes will strongly vary the surface responsc against the high-coherent incident
wave field.
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Figure 2: Two-dimensional ground model of Figure 3: Displacements at the ground sur-
Higashi-Nada ward, Kobe face due to Ricker-wavelet { f, = 1Hz) with

0°(a) and 20°(h) incident angles

4. NUMERICAL ANALYSIS USING KOBE GROUND MODEL

4.1 GROUND MODEL AND BOUNDARY ELEMENT ANALYSIS

To demonstrate the validity of the average amplification factor, the ground model of Kobe City shown by Fig.2
has been used. This model is based on the model developed by Pitarka| Pitarka ef al,, 1996] io investigate the
amplification characteristics based on numerical analyscs and the seismograms observed during the aftershocks
of the 1995, Hyogo-ken Nanhu Earthquake. And this model had been partially changed to reduce computational
efforts.

The physical properties of the ground are tabulated in Tab.l. The Q-values have been taken from the one-
dimensional ground model at the FKE silc[lwata et al., 1996].

Array observations had been made at the several points including the KOB, FKI and FKE sites[Irikura, 1995;
Iwata et al., 1996]. The FKI site is located in the severely damaged band, and the KOB and FKI sites are in the
vicinity of the northern and southern edges of the damaged band respectively. In their study, the characteristics of
the ground motion have been revealed from the spectral ratio to a rock site: the 3 to 5Hz [requency compotcnts
predominate at KOB, 2 to 4Hz at FKI, and 2Hz at FKE.

The boundaries of the layers have been divided into the boundary elements as tabulated in Tah. 1. The total
number of elements is 765(1,269 degrees of freedom). The response functions of the surface nodes have been
estimated with frequencies upto 7 Hz. Fig.3 shows the surface displacemenis due to an incident Ricker wavelet
with 1 Hz peak frequency(f,). It can be found that the waveforms are characterized by the phases that propagate
along the surface from the basin edge.

4.2 AVERAGE AMPLIFICATION FACTOR

4.2.1 COMPARISONS IN FREQUENCY AXIS

Fig.4(a) shows the average amplification factors at the KOB, FKI and FKE sites. At the KOB site, the average
amplification factor is smaller than those at other two sites, and also flatter in shape. On the other hand, if we

Table 1: Summary of model parameters

Region | § wave velocity  Density Q Number of elements  Length of elements
m/s g/cm?® (surface) m

1 2,850 22 o0 147( 17) 19.6~29.4

2 1,100 20 150 207¢ 0) 19.3~19.6

3 500 1.9 )] 406( 0) 10.0~19.3

4 300 1.8 60 . 502(251) 10.0
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Figure 5: Comparison between the plane wave amplification factors with 0 and -3
degrees incident angles

disregard the ripples, both the peak about ten times at 2 Hz and the tendency to decrcase with increasing frequency
can be found with the average amplification factors al the FKI and FKE sites.

Fig.4(b) shows a comparison between the average and one-dimensional amplification factors at the FKI
site. The latter have been estimated using the one-dimensional ground structure at the FKI site shown in Fig.2.
From this comparison, il has been found that the one-dimensional amplification factor is smaller than the average
amplification factor in the entire frequency range. Also it has been observed that the average amplification factor
is more stable than the one-dimensional one, and the effects of the one-dimensional multiple reflection were
involved in the average amplification factor from the fact that the frequencies which give the ripples on the average
amplification factor are coincident with those of the one-dimensional one.

Fig.5 shows the plane wave amplification factors with O and -30 degrees incident angles. In the factor
due 1o incidence with -30 degrees, the remarkable peak about fifteen times at 2.2 Hz has been observed, and
considering the locations of the focal region and site, it can be concluded that this amplificatior can be related
to the severely damaged band. However, the factor to the vertical incident is very small in this frequency range.
From this comparison, it can be understood that one has to pay his attention to the sensitivity of the plane wave
amplification to the incident angle. :
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Figure 6: Comparisons between the distributions of the average and plane wave
amplification factors along the ground surface x for 1,2, 3 and 4 Hz

4.2.2 COMPARISONS IN SPACE AXIS

Figs.6(a) 10 (d) show comparisons between the distributions of the average and plane wave amplification factors
for 1 to 4 Hz. The abscissa « is the distance measured along the ground surface. In these fipures, the thick line
indicates the average amplification factor.

From the comparisons of these figures, it can he observed that the locations where the peak amplification
appears for the lower frequencies is farther from the basin edge than that for the higher frequencies, This can be
understood as a constraint effect due to the existence of the bedrock near the surface. It can he said that when the
basin edge is far, the lower the frequency becomes, the more the bedrock supptesses the surface motion because
of the long wavelength.

The comparisons between the average and plane wave amplification factors show us the sensitivity of the
plane wave amplification factors 10 the obscrvational location in addition to the incident angle as mentioned
before. Also as shown in the figures, it is obvious that this phenomenon becomes more remarkable with increasing
frequency. Therefore, it should be noticed that whenever we examine the amplification cffects by assuming an
incident plane wave, we have to pay atlention to this sensilivity.

On the contrary, the average amplification factors have the shapes approximately consistent with the envelope
of the plane wave amplification factors except the sharp peaks around z = [, 200m for 3 and 4 Hez. From this
property, the average amplification factor can be applied to examine the amplification characteristics of the ground
in the case when the incident wave field is unpredictable. The sharp peaks in the plane wave amplification factors,
as mentioned previously, are due 10 the high coherence of the incident wave because the abusolute values of the
average coherence is unity for a plane wave, From these phenomena, the estimate of the coherence of the incident
wave can be considered as an important theme in further studies on the amplification characleristics of the ground.
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5. CONCLUSIONS

In this study, we have introduced both the average amplification factor and the average coherence, and applicd

them 10 the two-dimensional Kobe ground model. From these results, the followings have heen pointed out.

1. At the FKI and FKE sites, the average amlification factors show the peak about 10 at 2 Hz, but at the KOB
site, the clear peak cannot be found.

2. The amplification factors based on one-dimensional multiple reflections show sensitivity (o changes of fre-
quencies.

3. The atplification factor to a plane wave shows the sensitivily (o the changes of the incident angle and
location.

4. The average amplification factor cannot give the local amplification due to certain incident waves, however,
it can give the stable values closed to an envelope of ihe plane wave amplifications.

5. Considering the mentioned above, it has been concluded that the average amplification factor can represent
a measure of amplification effects of subsurface irregularities in the case when the incident wave ficld is
unpredictable.
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