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SUMMARY

The system identification and damage detection of long-span structures has been an area of
considerable interest due to the critical role such structures often play in civil infrastructure
systems. Because of their inherent length, such structures must be viewed as having multiple
inputs at the base during strong-ground motions. The Vincent Thomas Bridge in the Los Angeles
metropolitan area, is a critical artery for commercial traffic flow in and out of the Los Angeles
Harbour, and is at risk in the seismically active Southern California region, particularly because it
straddles the Palos Verdes fault zone. A combination of linear and nonlinear system identification
techniques is employed to obtain a complete reduced-order, multi-input-multi-output (MIMO)
dynamic model of the Vincent Thomas Bridge based on the dynamic response of the structure to
the 1987 Whittier and 1994 Northridge earthquakes.

Starting with the available acceleration measurements (which consists of 15 accelerometers on the
bridge structure and 10 accelerometers at various locations on its base), a multistage, time-domain
identification procedure is applied to the data set to develop an equivalent nonlinear, multi-degree-
of-freedom model. This self-starting identification method uses least-squares parameter estimation
methods, combined with nonparametric identification techniques, to generate a reduced-order
nonlinear mathematical model suitable for use in subsequent studies to predict, with good fidelity,
the response of the bridge under arbitrary dynamic environments.

Results of this study yield measurements of the equivalent linear modal properties (frequencies,
mode shapes and non-proportional damping) as well as quantitative measures of the extent and
nature of nonlinear interaction forces arising from strong ground shaking. It is shown that, for the
particular subset of observations used in the identification procedure, the apparent nonlinearities in
the system restoring forces are quite significant, and they contribute substantially to the improved
fidelity of the model. Also shown is the potential of the identification technique under discussion
to detect slight changes in the structure's influence coefficients, which may be precursors to
damage and degradation in the structure being monitored.

INTRODUCTION

A considerable amount of system identification and damage detection work has been performed on structures
subjected to ambient excitations and earthquake excitations. For the most part these have been performed on
relatively small highway overpass bridges, and multi-story buildings. This paper attempts to tackle the system
identification problem for a long-span structure excited by multiple inputs during strong earthquake events. This
problem poses challenges of performing system identification where the vibration response has a substantial
nonlinear component, where the structure has multiple input excitations, and with measurements from a sensor
array with low spatial resolution. These are very practical problems that demand increased attention from the
civil engineering research community.
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THE VINCENT THOMAS BRIDGE AND ITS DYNAMIC MONITORING SYSTEM

The Vincent Thomas Bridge is located in San Pedro, California, and is a major transportation artery connecting
Los Angeles with its harbour. It is a cable-suspension bridge, approximately 1850m long, consisting of a main
span of approximately 457m, two suspended side spans of 154m each, and a ten-span approach of approximately
545m length on either end. The roadway accommodates four lanes of traffic. The bridge was completed in 1964,
and in 1980, was instrumented with 26 accelerometers as part of a seismic upgrading project. Currently, the
sensor network is maintained by the California Division of Mines and Geology through the California Strong
Motion Instrumentation Program. Ten accelerometers measure motion at the superstructure footings, and fifteen
accelerometers are distributed at various locations and in lateral, longitudinal and vertical directions about the
superstructure itself. Figure 1 shows the locations and directions of all of the sensors. Notice that the eastern half
of the bridge is more densely instrumented. This is because the analog recorder is housed in the eastern cable
anchorage. Because the ground motion accelerometers were placed at locations on the footings of the
superstructure, the effects of soil-structure interaction need not be considered in the system identification
process. These measurements may be viewed as direct inputs into the superstructure, because they already
include the effects of the soil structure interaction. This differs from the often-encountered scenario, where
nearby free-field recordings are considered to be excitation input, and where soil-structure interaction effects
must be considered in the identification process.
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Figure 1: Accelerometer locations and directions for the instrumentation
network on the Vincent Thomas Bridge

EARTHQUAKE RESPONSE DATA SETS

Since its installation, the instrumentation network has been triggered twice during large seismic events in
southern California. The first was for the 1987 Whittier-Narrows earthquake (M = 6.1), and the second was for
the 1994 Northridge earthquake (M = 6.7). The proximity of these earthquake epicenters relative to the Vincent
Thomas Bridge is shown in Fig.2. Despite the greater distance to Northridge, because of the larger magnitude of
that earthquake, the observed peak input and response accelerations ranged anywhere from 1.5 to 3 times of
those recorded during the Whittier-Narrows earthquake.
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Figure 2: Map showing the location of the Vincent Thomas Bridge, and its proximity to the
1987 Whittier Narrows earthquake and the 1994 Northridge earthquake.

SYSTEM IDENTIFICATION PROCEDURE

The system identification procedure used in this study consists of two basic stages. The first is to identify a linear
model, and the second, is to treat the unmodeled response not as error, but rather as nonlinear dynamics to be
modeled. The first step involves the identification of an equivalent linear reduced order model of the structural
system. In this case, because 15 structural response locations are available, the model will be a 15 DOF model
with 10 support inputs. The equation of motion for such a system is given in Eq.(1), and is premultiplied by

1
11
−M . The 11M , 11C and 11K matrices have the same meaning as the more typical M , C , K notation of the
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where ( )t1X = active degree-of-freedom (DOF) displacement vector of order 1n , and ( )t0X = prescribed support

displacement vector of order 0n .

The parameters of the matrix clusters shown above are obtained by posing the problem as a series of
overdetermined equations and then getting the unknown parameters by least-squares solution. This is easily done
by writing each of the rows of the above equation of motion at every discrete time-step. If one assumes that the
components in the mass, damping and stiffness matrices are the unknowns, then this is written generically as

bαR ˆˆˆ =  (2)

where
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Equation (2) may be formulated in several ways depending upon the assumptions which are made or upon a
priori knowledge of certain parameters in the system matrices (Masri et al., 1987). In this study there was no a
priori knowledge, and the α̂  parameter vector is assumed to either contain coefficients of symmetric or
unsymmetric system matrices. When symmetric conditions are imposed, the α̂  vector has less parameters, and

the R̂ matrix must be constructed in a very particular order whose presentation is beyond the scope of this brief
paper. The unsymmetric case is however quite simple to present, where Eq.(2) can be decomposed into

1,1, niii == bRα  (3)

where
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With Eq.(2) or Eq.(3) one can solve for the unknown parameter vectors α̂  or the iα 's by obtaining the

pseudoinverse of the R̂  or R  matrices, respectively. This can be written as follows

ii bRαbRα †† orˆ ==  (4)

where † stands for the pseudoinverse of a matrix. Now that the unknown system matrix coefficients have been

determined they may be inserted into either Eq.(2) or Eq.(3) to yield an estimated b  vector, estb , which simply
contains estimates of the accelerations of the active degrees of freedom. Rather than treating the difference

( estbb − ) as modeling error, we treat it as a nonlinear residual, nlb , to be modeled. There are several nonlinear

modeling techniques available to us, however a nonparametric technique was chosen here. Each residual in
acceleration was fitted by forming a set of basis functions from the measured displacements and velocities of the
active degrees of freedom and the accelerations of the base (Smyth, 1998). These basis functions were generated
by producing all possible 3rd order power combinations of all of these signals. These were then arranged just as
in Eq.(4) (where only 1st order, i.e., linear model, basis functions were assumed) and a new set of unknown
coefficients was identified.
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APPLICATION OF THE SYSTEM IDENTIFICATION TECHNIQUE

Equivalent Linear System Identification from Bridge Response Data

It is not surprising that, given the highly nonstationary nature of earthquake ground motions, the measurements
of base and structural accelerations were also highly nonstationary for both earthquake events. From preliminary
analysis, it was also suspected that during the time of strongest shaking, the response had a significant nonlinear
component. This may have been due to several factors including geometric nonlinearities caused by large
deformations, or perhaps banging of expansion joints in the bridge deck. With this in mind, one must be careful
of the conclusions which are drawn from this type of relatively autonomous equivalent linearization technique.
Because different levels of nonlinearity were suspected to exist during different periods of shaking, identification
could be performed on various time windows of the recorded measurements. A sample result showing the
identified system modal frequencies for both of the data sets is shown in Fig. (3). In this case the entire record
lengths were used for the time-domain based identification procedure under discussion.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

H
z

Mode Number

Modal Frequencies under Unsymmetrical Condition

Northridge full history         
Whittier full history

Figure 3: Identified modal frequencies for the reduced order equivalent linear model based
on the Northridge and Whittier-Narrows earthquake response data recordings.

Clearly there are some similarities in the identified modal frequencies, and there are some differences. It is
important to stress that, unlike many methods which yield only modal frequencies and damping estimates, these
quantities are actually computed indirectly after the complete system matrices are identified. In fact, the
identification procedure makes no assumption of classical normal modes, and thus we get information on the
nonproportional damping. Unfortunately, however, because this is a base motion input case, and not a force
excited example, it is only possible to identify the cluster of system matrices premultiplied by the inverse of the
mass matrix.

Because the identification is relatively unconstrained, and because the equivalent linear modeling is being
performed on what is suspected to be nonlinear response dynamics, there is nothing to prevent the identification
of negative damping coefficients. This would detract from the method if only used for modal analysis. Table 1
shows the damping ratios of the equivalent linear systems identified for each earthquake.
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Table 1: Comparison of identified modal frequencies and damping ratios for equivalent linear dynamic
models based on the Northridge and Whittier-Narrows bridge response recording. Note that only the

second half of the records was used for this sample result.

Mode Sym. ID Northridge
Frequency (Hz)

Sym. ID Northridge
Damping Ratio

Sym. ID Whittier
Frequency (Hz)

Sym. ID Whittier
Damping Ratio

1 0.2267 0.0013 0.2536 -0.0457

2 0.3325 -0.0395 0.2562 0.2011

3 0.4312 -0.0310 0.3023 -0.0947

4 0.4429 0.0206 0.5529 -0.2072

5 0.4631 0.0058 0.5737 0.0305

6 0.4768 0.0570 0.6322 0.0232

7 0.5046 0.0359 0.7180 0.0079

8 0.5679 0.0336 0.8146 -0.0375

9 0.6342 0.0539 0.8152 0.0304

10 0.6942 0.0109 0.8524 -0.0091

11 0.8374 0.0530 0.9556 -0.0083

12 0.9535 -0.0147 1.0466 0.0019

13 0.9802 -0.0369 1.0842 0.0502

14 1.0342 0.0281 1.1270 0.0196

15 1.0558 0.0142 1.3895 0.0091

Nonparametric Modeling of the Nonlinear Residual

Depending upon which time window was used for equivalent linear modeling and subsequent comparison of fits,
the nonlinear residual error ranged anywhere from as low as 10% to as high as 85%, with an average residual of
about 50-60%. A sample of these fitting errors is shown below in Fig.(4).
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Figure 4: Comparison of the acceleration fit for the equivalent linear model and the exact measured  time-
history for station 15, which is a vertical motion at the midspan of the bridge.

Notice in Fig.(4) how the acceleration based on the linear model matches the response reasonably well
(approximately 20% rms residual). This is largely attributable to the fact that the vertical deck modes dominated
the response signal for this station, and were relatively easy for the linear system to model.
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Nonlinear residuals remain for each active degree of freedom acceleration measurement. These were fitted with
the nonparametric technique outlined earlier. An example of the performance of this method is shown in Fig.(5).
In this case the fitting was performed on lateral response station 7, which had a 46% rms nonlinear residual to be
modeled nonparametrically. The fitting of this nonlinear component was to within 55% rms error. Therefore the
entire signal was modeled to within an accuracy of about 25.3% error. This is a respectable result given that the
system is undergoing change during the excitation.
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Figure 5: Comparison of the nonlinear residual component of the station 7 measurement
(solid blue line), the nonparametrically modeled signal (dashed red line),

and the fitting error (thick green line).
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DISCUSSION

A brief sample of the identification results has been shown here, and they confirm that this relatively simple
time-domain based identification procedure can capture, in a reduced order model, the essence of the response
dynamics of this highly complex structural system. The equivalent linear identification phase yields system
information which includes complex mode shapes; in other words, it makes no assumptions of proportional
damping. The modal frequencies obtained for the two earthquakes are similar, but indicate some system changes.
Additional analysis is needed to compare these identified systems under earthquake loading with previous
identification work performed on the bridge under ambient loading conditions (Abdel-Ghaffar and Housner,
1977, Abdel-Ghaffar et al., 1995).

To give some idea of the variation over time in the system dynamics, histogram plots of the identified

)10,10(3 A parameter are shown in Fig.(6). Recall that the A3  matrix represents 11
1

11 KM− , and therefore if one

assumes the mass distribution does not vary, this reflects variation in the stiffness matrix. The distribution was
obtained by performing the identification procedure over short windows (1000 pts. for Whittier, and 1500 pts.
for Northridge) and shifting the windows by small amounts until the end of the data set was reached. These types
of results can be compiled to track structural changes during the excitation process.
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