

2270

LIQUEFACTION HISTORY, 416-1997, IN JAPAN

Kazue WAKAMATSU¹

SUMMARY

Liquefaction has been known to occur repeatedly at the same site during successive earthquakes. Maps showing locations of past liquefaction occurrences are very useful to delineate and characterize areas of liquefaction susceptibility for future earthquakes. In this study, historical occurrences of liquefaction during the period of 416-1997 in Japan are investigated through documentary study, post-earthquake reconnaissance surveys, and interviews to local residents. A total of 140 earthquakes which induced liquefaction are listed and a map showing distribution of liquefied sites in these earthquakes is compiled. Plains and/or basin where liquefaction occurred repeatedly during successive earthquakes are presented. Seismic intensities, which induced liquefaction effects, are examined and relationships between the distance from epicenter to the farthest liquefied sites and an earthquake magnitude are studied based on the liquefaction data from the earthquakes.

INTRODUCTION

Liquefaction is known to occur repeatedly at the same site during more than one earthquake as shown by examples from Japan and United States [Kuribayashi and Tatsuoka, 1975; Youd, 1984; Yasuda and Tohno, 1988, Wakamatsu, 1991]. Thus, maps showing the locations of past liquefaction may be considered as potential areas of liquefaction in future earthquakes. The author has compiled records on occurrences of liquefaction during 123 Japanese earthquakes during the period of 416-1990 into a book entitled "Maps for historic liquefaction sites in Japan" [Wakamatsu, 1991]. Since 1990, extensive liquefaction has been induced during several earthquakes including the 1995 Hyogoken Nanbu earthquake. In addition, new data have been found concerning the historical earthquakes. This paper supplements the previous work by the author with new data from the earthquakes after 1990 as well as historic earthquakes, and discussed some characteristics of liquefaction occurrences in Japan.

EARTHQUAKE INVESTIGATED

Up to the present, approximate 850 destructive earthquakes have been recorded in various kind of historical materials and seismic data in Japan [Usami, 1996]. The oldest one among the earthquakes is the August 23, 416 earthquake, which was documented in the "Nihon Shoki", authorized historical document of Japan. These 850 earthquakes during the period of 416-1997 in Japan were investigated in this study. They include about 450 earthquakes until 1884, which documented in nonscientific materials and about 400 recent earthquakes after 1884 when a nationwide earthquake observation was started in Japan. No instances of prehistoric liquefaction, which were revealed by excavation, are included in the liquefaction sites in this study, for date of the earthquake which induced liquefaction can be hardly identified.

IDENTIFICATION OF LIQUEFACTION OCCURRENCES

To search for records of liquefaction effects, various kinds of materials on earthquake damage were collected. They include several compilations of historic materials on the earthquakes prior to 1884. In addition, in several earthquakes the author performed post-earthquake reconnaissance investigations and interviews to local residents. In the investigations, occurrences of liquefaction were identified by observed sand and water boiling and/or floating up of buried structures, but observed fissures, flowslides, ground subsidence and settlement of structures without sand and/or water boils were excluded from signs of liquefaction effect.

EARTHQUAKES WHICH CAUSED LIQUEFACTION

The investigation revealed that totally 140 events induced liquefaction at several thousand sites during the period of 416-1997 including the original 123 earthquakes previously presented by the author. These 140 earthquakes are summarized in Table 1. The magnitude of earthquakes induced liquefaction ranges 5.2 to 8.4. The oldest event which was identified to induce liquefaction is the 745 earthquake occurred in Gifu Prefecture located central part of Honsyu Island, whereas the latest one is the 1997 Kagoshimaken Hokuseibu earthquake which attacked Kusyu Island (After then, liquefaction occurred at Yuza, Yamagata Pref. during February 26, 1999 earthquake). Since 1884 from which systematic earthquake observation has been carried out in Japan, 77 earthquakes have generated liquefaction. Thus liquefaction has occurred twice in every three years at somewhere in Japan during the last 113 years.

LOCATION OF HISTORIC OCCURRENCES OF LIQUEFACTION

Figure 1 plots liquefied sites due to the earthquakes after 1884, in which locations of liquefaction could be identified. Excepting a few cases, the liquefied sites located on low-lying areas whose subsurface ground is consist of Holocene alluvial fan, fluvial, deltaic, beach and aeolian deposits and artificial fills. In some areas such as the plains of Nohbi, Akita, Niigata, Kanto, Osaka, Kanazawa, Tsugaru, Tokachi, Sendai, Takada, Shizuoka and Tenryu, and Kyoto Basin, liquefaction observed in more than five successive earthquakes for the last fifteen centuries.

The sites of liquefaction extend over the area of several hundreds kilometers in diameter due to the large earthquakes with the magnitude of the order of eight or more such as the Oct.28, 1891 (Nohbi) and the Dec.21, 1946 (Nankai) earthquakes in Figure 1. In contrast, the liquefaction effects developed within the source area during the small earthquakes with the magnitude less than six such as the earthquakes of July 22 1887, Jan. 3 1892, Sep.7 1893, Jan.17, 1897, July 4, 1925, Oct.27 1927, Oct.17 1930, Oct.19 1955, and Feb. 27 1961 in Figure 1.

SEISMIC INTENSITY AT LIQUEFIED SITE

Extent of liquefaction susceptible area can be easily estimated in an earthquake based on seismic intensity if a correlation is established between past liquefaction occurrences and seismic intensity. Figure 2 shows distributions of liquefied sites and seismic intensities on the Japan Meteorological Agency (J.M.A.) scale in the recent earthquakes. The most of the liquefied sites in each earthquake located within the zones of intensity V and greater (The different seismic intensity scales including J.M.A. and M.M. are correlated in Figure 3).

Figure 4 shows seismic intensity at liquefied sites on the J.M.A. sale in the earthquakes after 1964. The graph also indicates that the liquefaction is generally induced by seismic shaking with intensity V and greater on the J.M.A. scale as previously pointed out in Figure 2. However, minor cases of liquefaction occurred at less than V. Figure 5 shows geomorphological conditions at the sites where liquefaction occurred at less than V shown in Figure 4. Most of the sites are on the conditions which have been considered as the most susceptible to liquefaction such as reclaimed land and former river channel, although J.M.A. scale at the times of the earthquakes is based on intensities over relatively large area which may not fully take account of local site conditions.

Table 1: Earliquakes which muuceu Liquelacuon uuring the renou of 410-199	Table 1: E	Earthquakes v	vhich Induced Lie	quefaction during	the Period of 416-199
---	------------	---------------	-------------------	-------------------	-----------------------

<u>г</u>	140	ie I. Dur inquare		Linduced L	inque:	action auting			
		Enicontor	Focal	Magnitude			Enicontor	Focal	Magnitude
No.	Date	Epicentei	depth	IUsami.	No.	Date	Epicentei	depth	IUsami.
		[Usami, 1996]	(Irma)	1006]			[Usami, 1996]	(lem)	1006]
			(KM)	1996]				(KIII)	1996]
1	745	35.4°N. 135.5°E	unknown	7.9	71	Jan. 10, 1894	35.4°N, 136.7°E	unknown	6.3
2	950	20.0°N 120.7°E	unlmourn	7.0	72	June 20, 1804	25 7°N 120 8°E	untrouwn	7.0
2	830	39.0 N, 139.7 E,	unknown	7.0	12	June 20, 1894	55.7 N, 159.8 E	unknown	7.0
3	July 10, 863	unknown	unknown	unknown	73	Oct. 22, 1894	38.9°N, 139.9°E	unknown	7.0
4	August 12, 1195	25 00N 125 00E		7.4	74	Jan 19 1905	26 19N 140 49E		7.0
4	August 15, 1185	55.0 N, 155.8 E	unknown	7.4	/4	Jan. 18, 1895	30.1 N, 140.4 E	unknown	1.2
5	Oct. 9, 1257	35.2°N, 139.5°E	unknown	7.0 - 7.5	75	August 31, 1896	39.5°N, 140.7°E	unknown	7.2 ± 0.2
	2000, 1207		1	710 710	70	114gast 51, 1050		1	7.2 = 0.2
6	May 13,1449	35.0°N, 135.75°E	unknown	5¾ - 6.5	76	Jan. 17, 1897	36.65°N, 138.25°E	unknown	5.2
7	July 9 1498	33.0°N 132.14°E	unknown	70-75	77	Eeb 20 1897	38.1°N 141.9°F	unknown	74
/	July 9, 1498	55.0 N, 152.74 E	ulikilowii	7.0 - 7.5	11	160. 20, 1897	38.1 N, 141.9 E	ulikilowii	/.4
8	May 12, 1510	unknown	unknown	unknown	78	April 3, 1898	34.6°N, 131.2°E	unknown	6.2
0	L 10 150C	26 00NL 126 00E	1	7.0 . 0.1	70	1	29 CON 142 00E		7.0
9	Jan. 18, 1586	36.0°N, 136.9°E	unknown	7.8 ± 0.1	/9	April 23, 1898	38.6°N, 142.0°E	unknown	1.2
10	Sep 5, 1596	34.65°N 135.6°E	unknown	$7 \frac{1}{2} + \frac{1}{4}$	80	May 26, 1898	37.0°N 138.9°E	unknown	61
10	569.5, 1596	24 (50) 105 10 E	1 1	7.72 - 74	00	1111 20, 1000	37.0 H, 130.9 E	1 I	6.0
11	Sep.5, 1596	34.65°N, 135.6°E	unknown	1/2 ±1/4	81	August 10, 1898	33.6°N, 130.2°E	unknown	6.0
12	Feb 3 1605	33.5°N 138.5°E	unknown	70	82	Sep 1 1808	24.5°N 124.75°E	unknown	7
12	100.5, 1005	55.5 IN, 150.5 L	unknown	1.)	02	Sep. 1, 1070	24.5 IN, 124.75 E	ulikilowii	1
13	March 1, 1633	35.2°N, 139.2°E	unknown	$7.0 \pm \frac{1}{4}$	83	March 7, 1899	34.1°N, 136.1°E	unknown	7.0
1.4	Oat 19 1644	20.4°N 140.0°E	unlmourn	65 14	94	August 0, 1001	40.5°N 142.5°E	untrouwn	7.2
14	001. 18, 1044	39.4 N, 140.0 E	ulikilowii	$0.3 \pm \frac{7}{4}$	04	August 9, 1901	40.3 N, 142.3 E	unknown	1.2
15	June 16, 1662	35.2°N, 135.95°E	unknown	7¼ - 7.6	85	May 8, 1904	37.1°N. 138.9°E	unknown	6.1
1.0	E1 1 1666	27 101 120 205	1	(2)	0.6	1 2 1005	04 10NL 100 50E	1	67
10	Feb. 1, 1666	37.1°N, 138.2°E	unknown	6%	86	June 2, 1905	34.1°N, 132.5°E	unknown	6./
17	Oct. 7. 1685	unknown	unknown	unknown	87	August 14, 1909	35.4°N. 136 3°E	unknown	6.8
10	Less 10, 1601	40.0001 140.100		7.0		Magal 17 1014	20 503 140 405		7.1
18	June 19, 1694	40.2°N, 140.1°E	unknown	7.0	88	March 15, 1914	39.5°N, 140.4°E	unknown	7.1
10	Dec 12 1694	unknown	unknown	unknown	80	Dec. 8 1922	32.7°N 130.1°F	unknown	69
1)	D CI 1577		ananown			200.0,1722	25.011, 150.1 15	unknown	0.7
20	Dec. 31, 1703	34.7°N, 139.8°E	unknown	7.9 - 8.2	90	Sep. 1, 1923	35.2°N, 139.3°E	unknown	7.9
21	May 27 1704	40.4°N 140.0°E	unknown	$7.0 \pm 1/$	01	May 22 1025	35 6°N 124 0°E	unknowe	6.9
21	wiay 21, 1704	40.4 IN, 140.0 E	UIIKIIOWII	7.0 ± 4⁄4	91	wiay 23, 1923	55.0 IN, 154.8 E	UIIKIIOWII	0.0
22	Oct. 28, 1707	33.2°N, 135.9°E	unknown	8.4	92	July 4, 1925	35.5°N, 133.3°E	unknown	5.8
	Mov 12 1717	20 50NT 140 50E	unl	75	00	March 7, 1007	25 520NI 125 150D	0	7.2
23	may 15, 1/1/	38.5 IN, 142.5 E	unknown	1.5	93	marcn /, 192/	33.33"N, 135.15"E	U	1.5
24	1717	36.1/2°N. 136 1/2°E	unknown	61/4	94	August 6, 1927	37.93°N 142 12°E	10	6.7
1 2 -	D., 10, 1722	22.001 120 505		6 7 . 11		0.4.07.1027	27.501.100.005	~	
25	Dec. 19, 1723	32.9°N, 130.6°E	unknown	0.5 ±1/4	95	Oct. 27, 1927	37.5°N, 138.8°E	0	5.2
26	Nov 29 1724	unknown	unknown	unknown	96	Oct 17 1930	3630°N 13635°F	0	53
20	101.27,1724		ananown		70	Sec. 17, 1950	05.00 T, 100.00 E		5.5
27	March 8, 1729	unknown	unknown	unknown	97	Nov. 26, 1930	35.1°N, 139.0°E	0	7.3
20	1734	unknown	unknown	unknown	0.0	Sep 21 1021	36 15°N 130 22°E	15	60
20	1/37	ulikilowii	unknown	UIIMIOWII	90	50p. 21, 1731	30.13 IN, 137.23 E	1.5	0.7
29	Jan. 3, 1738	37.0°N. 138.7°E	unknown	51/2	99	Sep. 21, 1933	37.1°N. 137.0°E	10	6.0
20	Marah 26 1751	25 0°N 125 00E	unl	55 60	100	July 11 1025	24 070NL 120 400E	0	E A
- 30	March 26, 1751	35.0°N, 135.8°E	unknown	5.5 - 6.0	100	July 11, 1935	34.97°N, 138.42°E	0	6.4
31	May 21, 1751	37.1°N. 138.2°E	unknown	7.0 - 7.4	101	Feb. 21, 1936	34.58°N, 135.72°E	40	6.4
22	0 1 21 17(2	20 101 120 705	1	7.0	100	N 2 1026	20.150N 142.120E	0	7.5
- 32	Oct. 31, 1762	38.1°N, 138.7°E	unknown	7.0	102	Nov. 3, 1936	38.15°N, 142.13°E	0	7.5
33	March 8 1766	40.7°N 140.5°E	unknown	$7\frac{1}{4} + \frac{1}{4}$	103	May 1 1939	40.13°N 139.52°E	0	6.8
24	1. 20, 17.00	1017 11, 11012 E	1	774 = 74	100	X 1 15 1011		0	6.0
- 34	Aug. 29, 1769	33.0°N, 132.1°E	unknown	$1/3/4 \pm 1/4$	104	July 15, 1941	36.72°N, 138.23°E	0	6.1
35	June 11 1774	Unknown	unknown	unknown	105	March 4 1943	35.43°N 134.22°E	0	62
55	Julie 11, 1774	UIKIIOWII	ulikilowii	ulikilowii	105	Waren 4, 1945	55.45 IN, 154.22 L	0	0.2
36	August 23, 1782	35.4°N, 139.1°E	unknown	7.0		March 5, 1943	35.50°N, 134.22°E	0	6.2
37	May 21, 1702	32.8°N 130.3°E	unknown	6.4 ± 0.2	106	Sep 10 1943	35.52°N 134.08°E	0	7.2
57	Way 21, 1792	52.8 N, 150.5 E	ulikilowii	0.4 ± 0.2	100	Sep. 10, 1945	33.32 N, 134.08 E	0	1.2
- 38	Feb. 8, 1793	40.85°N, 139.95°E	unknown	6.9 - 7.1	107	Dec. 7, 1944	33.80°N. 136.62°E	30	7.9
20	Luna 20, 1700	26 60N 126 60E		$6.0 \pm 1/$	109	Ion 12 1045	24.7°N 127.0°E	0	69
- 39	June 29, 1799	30.0 N, 130.0 E	unknown	$0.0 \pm \frac{1}{4}$	108	Jan. 15, 1945	54.7 N, 157.0 E	0	0.0
40	Nov. 18, 1802	35.2°N, 136.5°E	unknown	6.5 - 7.0	109	Dec. 21, 1946	33.03°N. 135.62°E	20	8.0
4.1	L-1-10, 1004	20.059NL 120.059E	1	7.0 + 0.1	110	See. 27, 1047	24.7°N 122.2°E	05	7.4
41	July 10, 1804	39.05°N, 139.95°E	unknown	7.0 ± 0.1	110	Sep. 27, 1947	24.7 N, 125.2 E	93	7.4
42	Sep 25 1810	39.9°N 139.9°E	unknown	$65 \pm \frac{1}{4}$	111	June 28, 1948	36.17°N. 136.20°E	0	7.1
12	569.23,1010	5).) II, IS).) E	unknown	0.0 ± 74	110		41.00034.144.1005	ő	0.0
43	August 2, 1819	35.2°N, 136.3°E	unknown	$1/1/4 \pm 1/4$	112	March 4, 1952	41.80°N, 144.13°E	0	8.2
44	Dec 18 1828	37.6°N 138.0°E	unknown	6.0	113	March 7 1952	36.48°N 136.20°E	0	65
44	Dec. 10, 1020	57.0 IN, 150.7 E	unknown	0.7	115	x 1 07 1075	20 F0 11, 150.20 E	0	0.0
45	August 19, 1830	35.1°N, 135.9°E	unknown	6.5 ± 0.2	_114	July 27, 1955	33./3°N, 134.32°E	10	6.4
16	Nov 13 1921	unknown	unknown	unknown	115	Oct 19 1955	40.27°N 140.18°F	0	50
40	1101. 15, 1051	UIIKIIOWII	unknown	UIIKIIOWII	115	500.17,1755	40.27 IN, 140.10 E	0	5.7
47	Dec. 7, 1833	38.9°N, 139.25°E	unknown	71⁄2 ±1⁄4	110	Feb. 2, 1961	27027/NL 120050/E	20	5.0
10	Feb 0 1824	13 1°N 111 1°E	unknown	61	116		5/2/ N, 158°50 E	1	5.2
40	100. 7., 1034	43.4 IN, 141.4 E	unknown	0.4	1	E 1 07 10 11	210262 1212-12	10	= -
49	April 22, 1841	35.0°N, 138.5°E	unknown	61/4	117	Feb. 27, 1961	31°36'N, 131°51'E	40	7.0
50	April 25 1942	12 0°N 146 0°E	unknown	75	118	April 23 1962	42°14'N 143°55'F	60	7.0
50	1 ipin 23, 1043	42.0 IN, 140.0 E	unknown	1.5	110	1 1 20, 10 10	20044031440000		1.0
51	May 8, 1847	36.7°N, 138.2°E	unknown	7.4	119	April 30, 1962	<u>38°44</u> ′N,141°08′E	0	6.5
50	May 13 1947	27 2°N 120 2°E	unknown	61/2 +1/2	120	May 7 1064	40°23'N 130°00'E	0	60
32	wiay 15, 1847	37.2 IN, 138.3 E	unknown	072 ±1/4	120	171ay /, 1704	-+0 25 11,157 00 E	0	0.7
53	July 9, 1854	34.75°N, 136.0°E	unknown	71/4 ± 1/4	121	June 16, 1964	<u>38°21</u> ′N, 139°11′E	40	7.5
	Dag 02 1074	24 001 127 005		0.4	100	Feb 21 1049	32°01'N 120°42'E	0	6.1
54	Dec. 23, 1854	34.0°N, 137.8°E	unknown	8.4	122	100. 21, 1908	32 01 IN,130 43 E	U	0.1
55	Dec. 24, 1854	33.0°N. 135.0°E	unknown	8.4	123	April 1, 1968	32°17'N, 132°32'E	30	7.5
	Mag 1 15 1055	1			104	Mov 16 1069	10011/N 112025/E	Δ	7.0
56	March 15, 1855	unknown	unknown	unknown	124	wiay 10, 1908	40 44 IN, 145 55 E	U	1.9
57	Nov. 7, 1855	34.5°N, 137 75°E	unknown	7.0 - 7 5	125	June 17, 1973	42°58'N, 145°57'E	40	7.4
57	N 11 10	0.00 11, 107.70 L	1		100	Ion 14 1079	24046'NI 120015/E	0	7.0
_58	Nov. 11, 1855	35.65°N, 139.8°E	unknown	6.9 ± 0.1	126	Jan. 14, 1978	34-40 N, 139-15 E	U	7.0
50	August 23, 1856	41.0°N 142 14°F	unknown	75	127	Feb. 20, 1978	38°45'N, 142°12'E	50	67
55	- 1050 25, 1050	11.0 11, 172. /4 D	ananown	1.5	100	Luna 10, 1070	2000/11 142010/5	40	7 /
60	July 14, 1857	34.8°N, 138.2°E	unknown	6¼ ±¼	128	June 12, 1978	58°09'N, 142°10'E	40	1.4
61	April 0 1959	36 1°N 127 2°E	unknown	70 71	120	March 21 1982	42°04'N 142°36'F	40	71
01	лрш 9, 1030	JU.4 IN, 15/.2 E	UIIKIIOWII	1.0 - 1.1	127	1,101011 21, 1702	+2 0+11, 1+2 JU L		/.1
62	Jan. 5. 1859	34.8°N. 131.9°E	unknown	6.2 ± 0.2	130	May 26, 1983	40°21.4′N, 139°04.6′E	14	7.7
62	March 14, 1972	25 15°N 122 10F	unla	71.02	121	June 21 1092	41º15 7'N 120º00 2'E	6	71
03	watch 14, 18/2	55.15 N, 152.1 E	unknown	1.1 ± 0.2	131	June 21, 1903	-1 13.7 IN, 137 UU.2 E	0	/.1
64	July 22, 1887	37.5°N. 138 9°E	unknown	5.7	132	Dec. 17, 1987	35°22.3'N, 140°29.8'E	58.0	6.7
	Lulu 20, 1007	20.00NL 100.050E		60	122	Ion 15 1002	42055 0'NI 144001 4'NT	101	70
65	july 28, 1889	32.8 ⁻ N, 130.65 [°] E	unknown	6.3	133	Jall. 13, 1993	42 33.0 N, 144-21.4 N	101	1.0
66	Jan. 7 1890	36.45°N 137 95°F	unknown	6.2	134	Feb. 7, 1993	37°39.2'N, 137°18.0'N	25	6.6
	0 1 00 1001	25.15 II, 157.55 E	1	0.2	127	Lub. 12, 1002	40946 9/NL 120011 0/E	25	7.0
67	Oct. 28, 1891	35.6°N, 136.6°E	unknown	8.0	135	July 12, 1993	42 ⁻ 40.8 N, 139°11.0 E	55	/.8
69	Ian 3 1807	35 3°N 137 1°E	unknown	5 5	136	Oct. 4 1994	43°22.3'N 147°42 5'F	23	8.1
00	Jall. J, 1092	33.3 IN, 137.1 E	unknown	5.5	150	D 00 1001	10005 cbx 110011 c	- 23	5.1
69	Sep. 7, 1892	35.7°N, 137.0°E	unknown	6.1	137	Dec. 28, 1994	40°25.6′N, 143°44.9′E	0	7.5
70	Sep 7 1802	31 1°N 120 5°E	unknown	5 2	138	Jan 17 1995	34°35 7'N 135°02 2'F	17 9	7 2
70	sep. 1, 1893	51.4 IN, 150.5 E	unknown	3.3	150	5un. 17, 177J	57 55.7 IV, 155 02.2 E	17.7	1.4
					139	March 26, 1997	<u>31°59'</u> N, 130°22'E	8	6.3
					140	May 13 1007	31°57'N 130°19'E	8	62
					140	171ay 13, 1771	JI J/ IN, IJU IO E,	0	0.2

Figure 2: Distribution of liquefied sites and Seismic Intensity

VII	XII	XI	XII	
VII	X	Х	х	
VI	IX	IX		
V	VIII	VIII	IX	
11/	VII	VII	VIII	
IV	VI	VI	VII	
		V	VI	
111	V	•	V	
	IV	IV	IV	
11	Ш	Ш	Ш	
I	II	II	11	
0	Ι		I	
J.M.A. scale	M.M. scale	M.S.K. scale	R.F. scale	

Figure 3: Comparison of different seismic intensity scales [Seismological Division, J.M.A., 1971]

2270

Figure 4: Seismic intensity at liquefied sites on the J.M.A. scale

Figure 5: Geomorphological conditions at sites where liquefaction occurred at less than V

MAXIMUM EPICENTRAL DISTANCES TO A LIQUEFIED SITE

The maximum extent of the liquefaction susceptible area also can be estimated directly from the relationship between an earthquake magnitude and epicentral distance to farthest liquefied sites. Kuribayashi and Tatsuoka [1975] have shown, for 32 historic Japanese earthquakes, that the farthest epicentral distance to a liquefied sites, R in km, is bounded by a straight line on a magnitude, M_J , versus logarithm of distance plot, which can be expressed as follows:

$$\log R = 0.77M_{1} - 3.6$$

(1)

where M_J is the earthquake magnitude as defined using the J. M. A. scale.

Ambraseys [1988] also proposed a similar bound for shallow focus earthquakes based on more extensive study of epicentral distances at which liquefaction has occurred for 137 earthquakes including 32 and 27 events from Kuribayashi and Tastuoka [1975] and from other previous investigations [Youd, 1977; Davis and Berrill, 1983; Davis and Berrill, 1984; Fairless; Berrill, 1984] respectively.

The works of Kuribayashi and Tatsuoka [1975] was recently supplemented by the author with new data from 67 Japanese earthquakes over the past 106 years, including the original 32 earthquakes studied by Kuribayashi and Tatsuoka [Wakamatsu, 1991]. As a result of this study, the author proposed an upper bound relationship between M_J and R (for $M_J > 5.0$) as follows:

$$\log R = 2.22 \log(4.22M_{J} - 19.0) \tag{2}$$

The bounds developed by the author as well as Kuribayashi and Tatsuoka are plotted in Figure 6. The bound given by Eq. (2) based on the author's work is too conservative in practice. This is because the definition of liquefaction used by the author includes even minor signs of liquefaction effects such as minor sand boils. Considering only those data (from 46 Japanese events) indicating significant liquefaction gives a less pessimistic bound (the broken line in Figure 6) [Wakamatsu, 1993]:

$$\log R = 3.5 \log(1.4M_J - 6.0) \tag{3}$$

The M_J versus R for farthest sites of minor signs of liquefaction effects in the recent earthquakes after 1990 and a new data for the May 26, 1983 Nihonkai Chubu earthquake are also plotted in Figure 6. All of the sites fall within the upper bound relationship given by Eq. (2), which indicates that this relationship is valid for the prediction of the maximum range of liquefaction for a particular magnitude of earthquake, given the presence of potentially liquefiable Holocene sediments.

Figure 6: Epicentral distance to farthest liquefied sites, R, for J.M.A. Magnitude, M_J

CONCLUSIONS

The following can be summarized from the case histories of liquefaction due to the earthquakes occurred in Japan from 416 to 1997.

- (1) A total of 140 events with magnitudes ranging from 5.2 to 8.4 have induced liquefaction during the period of 416-1997.
- (2) Several thousand sites of liquefaction appeared in most part of Japan due to the 140 earthquakes. The most of them are located on low-lying areas underlain by liquefiable Holocene sediments.
- (3) Liquefaction was observed in more than five successive earthquakes in the last fifteen centuries, respectively, in such areas as the plains of Nohbi, Akita, Niigata, Kanto, Osaka, Kanazawa, Tsugaru, Tokachi, Sendai, Takada, Shizuoka and Tenryu, and Kyoto Basin.
- (4) The liquefaction was induced by seismic shaking with an intensity V and greater on the J.M.A. scale. However, minor cases of liquefaction occurred at less than V.
- (5) The upper bound relationship between earthquake magnitude on the J.M.A. scale, M_J , and epicentral distance to the farthest liquefied site, R, given by $\log R = 2.22 \log(4.22M_J 19.0)$ is valid for the prediction of the maximum range of liquefaction for a particular magnitude of earthquake.

REFERENCES

Ambraseys, N.N. (1977), "Engineering Seismology," Earthquake Engineering and Soil Dynamics, 17, pp.1-15.

- Davis, R. O. and Berrill, J. B. (1983), "Comparison of a Liquefaction Theory with Field Observations", Geotechnique, Vol.33, No.4, pp.355-460.
- Davis, R. O. and Berrill, J. B. (1984), "Discussion of Comparison of a Liquefaction Theory with Field Observations," *Geotechnique*, 34, 4, pp.627-629.
- Fairless, G. and Berrill, J. (1984), "Liquefaction during Historic Earthquakes in New Zealand", Bull. of New Zealand National Soc. of Earthquake Eng., 17, pp.290-291.
- Kuribayashi, E. and Tatsuoka, F. (1975), "Brief Review of Soil Liquefaction during Earthquakes in Japan", *Soils and Foundations*, 15, 4, pp.81-92.
- Seismological Division, J.M.A.(1971), "The Records of Seismic Intensity Observed in Japan," *Technical Report* of Japan Meteorological Agency, 76 (in Japanese)
- Usami, T., (1996), *Materials for Comprehensive List of Destructive Earthquakes in Japan*, Univ. of Tokyo Press., Tokyo (in Japanese).
- Wakamatsu, K. (1991), *Maps for Historic Liquefaction Sites in Japan*, Tokai Univ. Press, Tokyo (in Japanese with English abstract).
- Wakamatsu, K. (1993), History of Soil Liquefaction in Japan and Assessment of Liquefaction Potential Based on Geomorphology, A Thesis in the Department of Architecture Presented in Partial Fulfillment of the Requirements for the Degree of Doctor of Engineering, Waseda Univ. Tokyo.
- Yasuda, S. and Tohno, I. (1988), "Sites of Reliquefaction Caused by the Nihonkai-Chubu Earthquake", *Soils and Foundations*, 28, 2, pp.61-72.
- Youd, T. L. (1977), "Discussion of Brief Review of Liquefaction during Earthquakes in Japan by E. Kuribayashi and F. Tatsuoka", *Soils and Foundations*, 17, 1, pp.82-85.

Youd, T.L. (1984), "Recurrences of Liquefaction at Same Site", Proc., 8th World Conf. on Earthquake Engineering, San Francisco, 3, pp.231-238.