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SUMMARY

Dynamic analysis of a real-life building adjacent to another structure under earthquake time
histories is discussed in this paper. The building under investigation is one of the experimental
twin buildings of Tohoku University, Sendai, Japan. Both buildings are instrumented for recording
the earthquake acceleration. The recorded data is used here to verify the theoretical method of
analysis. The system of two adjacent buildings is modeled using a 2D boundary element procedure
and acceleration spectrum of the base and roof levels are computed with the recorded free-field
motion as input. The buildings in the model are represented by their equivalent characteristics in
the first mode. Variation of earthquake motion in space is also included assuming an incoherency
function. The calculated spectra are verified against the recorded spectra at the same locations. The
above procedure is executed for two different earthquake events. The results of the analysis
illustrate good agreement between the theoretical and recorded responses at certain conditions
regarding the incident wave field. It is shown that even using a rough structural and soil model in
structure-soil-structure analysis can give results which are exact enough for engineering use.

INTRODUCTION

Calculating the dynamic response of a structure is usually carried over assuming a rigid bearing medium, i.e., a
soil without internal deformations, under the structure. Since any such medium has a finite rigidity, its own
relative displacements also contribute to the structural response. So, as the soil becomes softer, the recorded
response of a structure is expected to depart more and more from the values calculated with the above basic
assumption. The softness of the soil beneath the structure also results in an exchange of energy or cross-
interaction between the building under consideration and the nearby buildings which alters the structural
response pattern even more.

Taking into account the effects of soil flexibility and cross-interaction with the adjacent buildings rigorously is
possible via different formulations within the finite element and boundary element methods. In these methods
the finite element model of the structures are coupled with the soil by discretizing either the structure-soil
interface or a limited region of the soil around the structure. Then the free-field motion of the soil is induced at
the boundary nodes as the input motion for which the dynamic response of the system is calculated.

The problem of the structure-soil-structure interaction has been addressed by several researchers. Dynamic
response of adjacent rigid surface foundations was investigated in 2D case by [Hryniewicz, 1993] and in 3D case
by [Lin et al., 1987]. The effects of flexibility of such foundations were explored by [Qian et al., 1996]. As for
the adjacent structural response, the case of surface structures was examined by [Luco & Contesse, 1973] and of
the embedded structures by [Imamura et al., 1992].

The above theoretical methods involve many assumptions regarding structure, soil, and incident wave field.
Assessing the effects and accuracy of these assumptions needs instrumenting some adjacent buildings, recording
the structural response under ambient, forced, or more importantly, earthquake vibrations, and, comparing the
records with the analytical results. This has been the motivation behind the present study. The needed database
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for performing this task was prepared now several years after instrumenting the experimental twin buildings of
Tohoku University, Sendai, Japan and occurrence of many earthquakes during this period.

THE TWIN BUILDINGS

The experimental twin buildings of Tohoku University are located in the engineering campus. They are each a 3-
story concrete wall-frame building. One of the buildings is base isolated and the other has a conventional
foundation. The typical floor plan as well as the vertical cross section of the buildings are shown in Fig. 1, with
the location of accelerometers installed depicted as black circles. Constructing the buildings and instrumenting
them was originally done to experimentally investigate the benefits of base isolation, but its database was found
to be fulfilling the needs of the present study since the response of one building automatically includes the
dynamic effects of the other building in this system.

(a) (b)

Figure 1: The twin buildings. (a) Typical floor plan. (b) Vertical cross-section. Note: black circles show the
accelerometer location.

ANALYTICAL MODEL AND PARAMETERS

For the purposes of this study it is convenient enough to investigate an idealized system shown in Fig. 2. The 2D
structural models shown in this figure consist each of a rigid roof at their top held by columns that are connected
to the rigid foundations bonded to the surface of a homogeneous, viscoelastic half-space with its material
damping ratio gξ , poisson ratio ν , and shear-wave velocity sc  (Fig. 2a). The supporting columns are taken as

massless and presumed to respond within their elastic range of behavior in lateral direction. The  clearance
between the structures, edge to edge, is represented by the parameter 2 a . The mass of each roof and its
corresponding rotational mass moment of inertia are denoted by im  and iI , respectively ( i =1,2). The

dimension, 2 il , of a structure is assumed to be the same as that of its underlying foundation. Effects of cross-

interaction between the two structures are taken into account exactly through calculating the dynamic stiffness
matrix and effective input motion vector of the coupled system of foundations. The former is defined as the
coefficient matrix in the force-displacement relationship of the system consisting of massless adjacent rigid
foundations only and the latter is response of this system to a harmonic ground excitation.

The structures are excited at their bases by earthquake ground motion. Each accelerogram used is supposed to be
dominated by only one of the two types of waves: in-plane shear waves ( SV -waves) propagating in vertical
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Figure 2: System considered. (a) Prameters involved. (b) Degrees of freedom.

direction, thus producing a horizontal free-field motion in x -direction; and surface Rayleigh waves ( R -waves)
producing horizontal as well as vertical free-field motions. The ground motion is assumed to vary randomly in
space in addition to time.

DYNAMIC EQUATIONS OF MOTION

Equations of motion of  the  system of Fig. 2 are written  in  the  frequency  domain as follows: translation of
each structural mass ( 1m  and 2m ) in x-direction; translation of each building as a whole in x-direction; and,

rocking of each building as a whole about y-axis.

Contribution of the underlying soil to the above equations is in the form of interaction forces that are computed
as Eq. (1):

{ } [ ] { } 144414 ××× = kk UKP                                                                                                         (1)

in which { }kP , { }kU and [ ]K  are as Eq. (2):
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and { }kiP  is the vector of interaction forces applied on the foundation i, { }kiU  is a vector having the translational

and rocking degrees of freedom of the rigid foundation i as its elements, and, [ ]K  is the dynamic stiffness matrix

of the coupled foundations. The submatrices [ ]ijK  with ji ≠  contain the coupling terms between the adjacent

foundations. Arranging the equations written as above, a system of equations in matrix form is resulted as of Eq.
(3):

[ ]{ } { })(P)(U)(A ωωω =                                                                                                              (3)

where { })(U ω  is an 16 ×  vector of degrees of freedom of the total system given by Eq. (4) (refer to Fig. 2):

{ } { }022022011011 θθω h,u,u,h,u,u)(U =                                                                                                                        (4)
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The load vector { })(P ω  is consisted of appropriate combinations of elements of input motion vector of the

foundations. Various elements of the system stiffness matrix [ ])(A ω  contain mass, damping and stiffness

properties of the structures and soil.

VARIATION OF GROUND MOTION IN SPACE

The covariance matrix of the ground motion at a reference point in the site is defined as Eq. (5):
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in which { } { }Tf w,uu 000 =  is the vector of free-field motion at the reference point containing horizontal 
0

u and

vertical 0w components. At a different point i, the ground motion differs from that of the reference point

presumably in the form of Eq. (6) (see [Wolf, 1985]):
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in which 1−=i , k  is wave number, ix  is the distance of point i  from the reference point, and if  is the

incoherency function defined in Eq. (7):

( )[ ]2βγω /xexpf ii −=                                                                                                                                              (7)

In Eq. (7), γ  is the incoherency parameter which is between 0 and 0.5, ω  is the excitation frequency, and β  is

the velocity of the incident wave. Now, the covariance matrix of the free-field ground motion between two
arbitrary points i  and j  of the site can be written as Eq. (8):
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Combining Eqs. (5)-(7) with Eq. (8), the covariance matrix at every two points of the site is written as Eq. (9):
[ ] [ ] jiijij ffgCB =                                                                                                                                                      (9)

in which [ ].)xx(ikexpg jiij −−= Now if the interface between foundations and soil is discretized into a number

of elements so that there are N nodes in the system, it can be shown that Eq. (10) exists between the covariance
matrix of the foundations’ response [ ]0B and that of the free-field motion at N points in the site [ ]B :

[ ] [ ][ ][ ]TR
~

BRB =0                                                                                                                                                    (10)

in which [ ]R  is the matrix of transfer functions between free-field motion { }fu and foundations’ response { }0U ,

as:

{ } [ ]{ }fuRU =0                                                                                                                                                        (11)

Combining Eqs. (9) and (10) results in Eq. (12):
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ij
rsA  are transfer functions between power and cross spectra of the free-field motion at the reference point and of

the foundation response. Therefore, ij
rsA  are transfer functions between response spectra of foundations and

ground motion.
NUMERICAL IMPLEMENTATION

The structural model of Fig. 2 is analyzed for two free-field motions recorded near the twin buildings. These are
called “earthquake 1” and “earthquake 2”. Earthquake 1 occurred on 23.4.1987 with a PGA=91.3 gal while
earthquake 2 happened on 6.2.1987 with a PGA=61.5 gal. These earthquakes have been selected because of two
reasons. First, the analysis method is in elastic domain and the above PGA’s are small enough to ensure an
elastic behavior both within the structure and soil. Second, they are not too small to give a small signal/noise
ratio. The calculated values are total acceleration spectra of base and roof motions which are compared with the
recorded motions at the same places. For the sake of comparison in the dynamic analysis of the structure-soil-
structure system, it is assumed that the ground motion each time is governed by one of the two types of waves:
planar shear waves propagating in vertical direction, and Rayleigh waves. Also, an additional analysis is done
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assuming some random spatial variation in the ground motion according to Eq. (7) with taking γ =0.5 which is

an upper value.

Results of the analysis using earthquake 1 as the free-field motion are shown in Fig. 3. In the case of shear
waves, Fig. 3a illustrates the Fourier amplitude of the horizontal motion at the base of the ordinary building. It is
seen that the shear wave pattern resembles the recorded motion at low frequencies very good, but there is some
overestimation in the amplitude at high frequencies. Also fluctuation of the analyzed motion is in harmony with
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Figure 3: Acceleration spectra of the ordinary building subject to  earthquake 1.
Note: index 1 is  for base level and 4  for roof level; index g is  for recorded spectrum, 
d for determinis tically computed, and r for randomly computed spectra.
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Figure 4: Acceleration spectra of the ordinary building subject to  earthquake 2.
Note: index 1 is for base level and 4  for roof level; index g is for recorded spectrum, 
d for deterministically computed, and r for randomly computed spectra.
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the recording almost exclusively. Values of the random analysis results are somewhat less that of the
deterministic ones. In Fig. 3b the results of the analysis at the roof level are shown. Here again at small
frequencies there is a very good agreement between the three sets of responses, however as the frequency
increases, the agreement deteriorates. In Figs. 3c and 3d the analysis results for the propagation of Rayleigh
waves are shown. As is seen, for small frequencies both at the base and roof levels very good agreement with the
recorded motion is seen. At the roof level a better resemblance is seen almost for all the important frequency
range except of an unwanted peak at a medium frequency. Again, if the spatial randomness of waves is taken
into account, smaller response amplitudes are resulted which sometimes improve the accuracy of results.

In Fig. 4 the spectral responses subjected to earthquake 2 as the free-field motion are shown. In the two upper
figures, namely Figs. 4a and 4b, the analysis results are shown under the incidence of shear waves. Similar to
Fig. 3, a good agreement is seen for small frequencies both at the base and roof levels. At the roof level, the
maximum response occurs at medium frequency where the agreement is poor with the shear wave pattern.
Taking the spatially random characteristics of the wave propagation, seems not to affect the analysis results
highly with shear waves. Turning to Figures 4c and 4d, a better agreement is seen between the analysis results
and the recordings, specially at medium frequencies where the maximum response happens at the roof level.
Again, effect of random spatial variation of ground motion is more highlighted with Rayleigh waves mostly by
decreasing the response amplitude. Accounting for this phenomenon subjected to Rayleigh waves, tend to
improve the accuracy of results at most frequencies in this case.

Overall, the Rayleigh wave pattern with spatial randomness seems to give the nearest values to the recorded
motions.

CONCLUSIONS

Dynamic analysis of two adjacent structures accounting for cross-interaction between them was performed in
this paper. The free-field motions used were the earthquake ground motions recorded near the buildings on the
ground. In calculating the input motion to the foundations of the two buildings, two types of waves were used:
first the vertically propagating shear waves, and second the horizontally propagating Rayleigh waves. Using an
exponential function with a negative power, a certain level of incoherency was assumed in the ground motion
which resulted in the variation of the excitation in space in addition to time.

Based on the dynamic analysis done, it is concluded that:
1. For the small range of frequencies, very good agreement is achieved between the calculated and recorded
motions regardless of the wave type considered. For other frequencies, the Rayleigh wave pattern gives much
better results. Taking into account the randomness of the waves improves the accuracy of the results in the latter
case even more.

2. Although a simple one-degree-of-freedom system was used for representation of the structures, and a 2D soil-
foundation system was considered to model the interaction effects, good agreement was achieved in most cases.
This shows that the proposed model is suitable for engineering purposes.

3. The dynamic analysis for shear waves was done assuming vertical propagation of the waves. It seems
necessary to redo this analysis for inclined shear waves to assess the effects of the horizontal propagation of the
incident field.
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