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SUMMARY

The reliability of two concrete shear walls, one squat and one slender, was calculated using a
simplified method based on, and slightly extended from, Cornell (1996), which greatly reduces
computational effort.  A more rigorous method of calculation based on first order reliability
analysis  (Thoft-Christensen & Baker 1982) was found to agree with the simplified results from
the extended Cornell method to within 30%.  This is sufficiently accurate for most purposes and
makes the Cornell method attractive for applications in the nuclear industry, and more generally
for investigating reliability issues, including calibrating partial factors for seismic codes, and for
investigating unusual or important structures under seismic loading.  A particular application of
the method is for deciding whether particular failure modes triggered by seismic intensities beyond
the design basis (‘cliff edge effects’) contribute significantly to the probability of failure.
Examples of such failure modes may be associated with liquefaction of foundation soils, P-delta
instability in structures and (as investigated in this study) uneven plastic strain distribution in
plastic hinges.

INTRODUCTION

Cornell (1996) has published a method for calculating seismic performance reliability.  The method provides a
simple and direct way of calculating reliability; it assumes that the seismic hazard curve follows a logarithmic
distribution, and that the structural resistance (fragility) is lognormally distributed.  Under these conditions,
Cornell shows that the annual probability of failure pf  is given by

( )p p ef m
k r= 1 2 1

2
/ δ (1)

where

pm = probability of occurrence of earthquake motions necessary to achieve the limit state in question,
given mean structural properties.

k1= slope of the annual probability of exceedence ground motion hazard curve. This implies that the
return period T corresponding to a ground motion intensity x is assumed to be of the form:

T k x k= 0
1       (2)

where k0 is a constant not affecting equation (1).

δr = coefficient of variation of the structural properties, which therefore describes the intrinsic
uncertainty in structural resistance. δr also allows for the uncertainty in frequency content of the input
ground motion.  Where the structural properties are well established, and the response is well
controlled, a value of δr = 0.4 would usually be conservative, according to Cornell (1996).
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Figure 1: Hazard curves for high and low seismicity areas (from NEHRP 1991)

A typical value of k1 for a high seismicity region is 4, while for the UK (an area of low seismicity) it is about 2.8.
As can be seen from Figure C1-7 of NEHRP (reproduced here as Figure 1), a logarithmic approximation for the
hazard curve is a good fit for low seismicity areas, but somewhat less good for high seismicity areas.  From
equation (1), and assuming δr = 0.4, the quotient pf /pm is 3.60 in an area of high seismicity (k1 = 4) and only
1.87 in an area of low seismicity (k1 = 2.8).  Therefore, using the Cornell approximation, quite good estimates of
failure probability can be obtained from calculations with all structural properties set to their mean values.  More
rigorous methods involve considering response with structural properties varied from their mean values; this
variation is accounted for in the Cornell method by the term δr in equation (1).  If the limit state of interest is one
of failure, it is likely that non-linear response will be involved.   Therefore, using the Cornell method, the
computational effort can be expended on investigating non-linear behaviour under extreme ground motions using
only one structural model with mean properties, rather than on performing analyses using a number of structural
models with varying properties.

As discussed above, it is often sufficient to take δr = 0.4 for the purposes of evaluating equation (1).  Where a
more rigorous justification is required, or where there are very large uncertainties in structural properties, then a
specific calculation for δr is needed.  This can be done by calculating δr from the individual statistical variances
of the structural properties.  In the case where all the properties are lognormally distributed, and statistically
independent, and the ground motion intensity at failure is given by a simple multiplicative law, it can be shown
that δr equals the SRSS (square root sum of squares) of the individual COV’s (coefficients of variations) of the
structural components.  That is:

If Intensity at failure, If  =  X * S1* S2 * …….. * SN

Then δr ={ [(COV)S1]
2 + [(COV)S2]

2 +  ………+ [(COV)SN]2}½ (3)

Where X = a constant

S1 = first structural property

S2 = second structural property

etc.

(COV)S1= Coefficient of variation of first structural property

(COV)S2= Coefficient of variation of second structural property

etc.

In the more usual case, however, the intensity at failure will not follow a simple multiplicative law but will be
much more sensitive to changes in some of the structural properties than in others.   It is proposed that a
weighted SRSS sum of the coefficients of variation should be used to calculate δr, where the weighting factors
are equal to the partial derivatives of the failure intensity with respect to each structural properties, as follows.
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δr ={ [a1(COV)S1]
2 + [a2(COV)S2]

2 +  ………+ [aN(COV)SN]2}½ (4)

Where a
L n I

L n S
f

1 1
=

∂
∂
( ( )

( )  etc (5)

The point at which these derivatives are calculated is discussed in the next paragraph.  The partial derivatives aR

can be obtained by recalculating the ground motion intensity at failure with a small change in each of the
structural properties in turn.  This requires a new structural model with properties differing from the mean
values.  However, since only the sensitivity to change is required, a very simple model is likely to suffice; an
equivalent linear model may be sufficient.  In this study, simple equivalent linear models were used to calculate
the  derivatives aR and hence δr, with results that appear quite adequate even for large values of δr.  The method
used is now described in more detail.

Initially, the derivatives aR were calculated with the structural properties SR set at their mean values SR ,mean.
Strictly, they should be calculated at the design point (at which failure is most likely to occur), which for each
variable is a constant number Z of standard deviations from the mean value.  A simple but approximate iterative
technique, easily implemented with a spreadsheet, was employed to allow for this; by trial and error, the value of
Z was found which yielded the same value of failure probability pf calculated by two methods: firstly from using
equations (4), (5) and (1), and secondly from the failure probability associated with the ground motions
producing a response corresponding to structural properties SR, mean + Z * (COV)SR in the equivalent linear
structural model.

It is instructive to calculate the relative contribution to overall uncertainty of each parameter.  For the Rth

parameter, it follows directly from equation (4) that this can be defined as αR where

αR  = [aR(COV)SR] / δr (6)

In the rigorous RELY analysis, the αR values are calculated separately for each return period of motions
considered.  In the approximate Cornell analysis, only one return period of motions is considered, and so only
one set of αR values are calculated.  It may be noted that it follows directly from equations (4) and (6) that the
SRSS of the αR values equals 1.
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Figure 2: Geometry of squat and slender shear walls studied



23814

RELIABILITY ANALYSIS FOR SQUAT SHEAR WALL

The theory outlined above was tested on two simple structures (Figure 2).  Within the confines of this paper, full
details of the analysis have not been provided; further information can be obtained from the authors.

Figure 2 shows the squat shear wall analysed for the study.  Using the program Oasys DYNA-3D (1994), a
model of the shear wall was subjected to various intensities of earthquake loading, intended as representative of
UK earthquake motions.  The computer model consisted of a single degree of freedom mass spring system, with
the spring characterised by a non-linear model developed in a research contract for Health & Safety Executive
(Ove Arup & Partners, 1994).

The annual probability of failure under seismic loading was initially found by a response surface technique.  This
involved carrying out a large number of non-linear dynamic analyses using DYNA-3D to construct regression
equations for the response of the wall as a function of its structural properties; these regression equations were
then used to produce ‘response surfaces’ corresponding to the failure strength of the wall.  Using the specialist
structural reliability package RELY (Ramachandran & Baker 1982), the annual probability of failure was
calculated as pf = 2.9 x 10-6.  Only one earthquake time history was used, so the effect of uncertainty in ground

motion characteristics was excluded.  Six contributors to structural uncertainty were considered, as listed in
Table 1.

Using the same DYNA-3D model, the annual exceedence probability pm of the motions needed to cause failure
with the structural parameters set at their mean (expected) values was calculated; it was found to be 1.5 x 10-6.
As a check, and to enable the later calculation of the derivatives aR in equation (4),  the wall was modelled as an
equivalent elastic-perfectly plastic system, which gave pm = 2.2 x 10-6 (ie 50% greater than the ‘accurate’ value
from DYNA-3D).  Given the approximate nature of the analysis, the match was considered good.  The
sensitivity of the structure to changes in the governing parameters was calculated by hand, using the same simple
equivalent linear SDOF model, in order to calculated the derivatives aR.  From equation (4), δr was calculated as
0.30, and hence the Cornell increase factor pf / pm from equation (1) was 1.4.  Therefore, the annual failure
probability pf  was estimated to be 1.4*1.5 x 10-6= 2.1. x 10-6 - ie 30% less than the more accurate estimate from

RELY.

The relative contribution of each of the structural parameters to the overall structural variability also compared
quite well with the values reported from the original RELY analysis (see Table 1).  However, it does appear that
the contribution of the uncertainty or ‘error’ term in the shear strength equation may have been underestimated in
the approximate analysis.

In this case, therefore, a value of seismic reliability within 30% of the ‘correct’ answer was produced with the
aid of the Cornell method.  Where seismic reliability is being compared with other failure sources, an accuracy
to a factor of 2 or 3 may well be quite sufficient.  These findings lend support to the usefulness of the Cornell
method.

Table 1: Squat shear wall - relative contribution of parameters to failure
Return period (years)

5E+04 2E+05 1E+06

R Contributor to
uncertainty

αR (equation 6)
RELY (rigorous) analysis

αR (equation 6)
Cornell (approx.) analysis

1 Effective hysteretic
damping in model

-0.20 -0.45 -0.81 0.73

2 Error term in  the shear
strength equation

-0.31 -0.52 -0.44 0.26

3 Shear strength
degradation on cyclic

loading

0.87 0.56 0.27 0.43

4 Regression uncertainty
in response surface

0.37 0.40 0.22 0.46

5 steel yield strength, fy -0.12 -0.21 -0.18 0.11

6 concrete cylinder
strength fc

-0.04 -0.06 0.05 0.04
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RELIABILITY ANALYSIS FOR SLENDER SHEAR WALL

A similar procedure was adopted for the slender shear wall shown in Figure 2, which was modelled using the
fibre element in DRAIN-2DX (Prakash et al, 1993).  The shear wall was based on a wall tested by Goodsir &
Paulay (1985), and the experimental results they report were used to validate the DRAIN model.  The model was
used to generate regression equations for the peak steel strain corresponding to a given intensity of ground
motion; the results are shown in Figure 3.  This shows the interesting feature that the peak steel strain rises very
rapidly above a certain ground motion intensity; this can be seen where the regression lines become vertical for
normalised ground motion intensities between 2½ and 3½.  This is a sort of ‘cliff edge’ effect.  The reason was
that once the steel strain in the lowest fibre element of the wall exceeded a certain value, it became so lacking in
stiffness that all additional strain became concentrated in this element; the strain value at which this occurred
depended on the shape of steel stress strain curve that was assumed.  In part, this reflects a real phenomenon, and
many seismic codes specify a minimum degree of strain hardening to prevent it occurring at too low a value of
local curvature ductility.  However, it might be expected that in the DRAIN analysis, the phenomenon of strain
concentration would become more pronounced, if the thickness of the lowest fibre element were reduced, and
this was found in practice to be the case.  Thus the results became highly model dependent, with apparently more
refined models (ie those with narrow fibre elements) producing less realistic results.  In reality, bond slip
averages the steel strain over a length of concrete, effectively implying that plane sections no longer remain
plane.  By contrast, the DRAIN fibre element assumes that the steel remains perfectly bonded to the concrete.
An interesting way of resolving this problem in DRAIN might be to use the ‘pull-out’ element that is provided.
This was not tried for this study; instead, a shape of steel stress strain graph and thickness of fibre element were
chosen to give reasonable agreement with the Goodsir & Paulay (1985) experimental results.  Some uncertainty
in the shape of the steel stress strain graph was assumed, corresponding to the three shapes (‘low, ‘best estimate’
and ‘high’) shown in Figure 3.

0%

5%

10%

15%

20%

25%

0.0 1.0 2.0 3.0 4.0

Normalised ground motion intensity

P
ea

k 
st

ee
l s

tr
ai

n

Low shape

Best estimate

High shape

Low shape:
regression

Best estimate:
regression

High shape::
regression

Figure 3: Regression analysis for slender shear wall

Table 2  Comparison of Cornell and RELY estimates for seismic reliability of slender shear wall
Contribution to failure probability RELY analysis Cornell approximation

Mode 1 5.3E-07 4.9E-07
Mode 2 1.4E-07 1.4E-07
TOTAL 6.7E-07 6.3E-07

Table 3:  Slender shear wall - relative contribution of parameters to mode 1 failure (prior to ‘cliff edge’)
Return period

1.0E+03 1.0E+04 1.0E+05 1.0E+06 2.0E+06

Uncertainty
Contributor

αR (equation 6)
RELY (rigorous) analysis

αR (equation 6)
Cornell (approx.) analysis

Fracture
strain

0.89 0.90 0.90 0.90 0.90 0.91

Regression
error term

0.44 0.43 0.43 0.43 0.43 0.41

Shape factor 0.07 0.07 0.07 0.07 0.07 0.06
Steel yield

strength
-0.09 -0.09 -0.09 -0.09 -0.09 0.09
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Table 4:  Slender shear wall - relative contribution of parameters to mode 2 failure (vertical ‘cliff edge’)
Return period

1.0E+03 1.0E+04 1.0E+05 1.0E+06 1.0E+07

Uncertainty
Contributor

αR (equation 6)
RELY (rigorous) analysis

αR (equation 6)
Cornell (approx.) analysis

Regression
error term

-0.73 -0.72 -0.68 -0.57 -0.23 0.27

Shape factor 0.14 0.14 0.17 0.30 0.79 0.76
Steel yield

strength
-0.67 -0.68 -0.71 -0.77 -0.56 0.59

The mean steel strain corresponding to fracture was assumed to equal 10%, with upper and lower five percentile
values of 20% and 5% respectively.  Failure at values above and below the critical ‘cliff edge’ point shown in
Figure 3 was treated as belonging to two different failure modes, and  the failure probability was summed for
each separately.  The results from the two analyses are shown in Table 2.  Tables 3 & 4 show the relative
contributions of the variables to overall failure probability.  It can be seen that agreement between the rigorous
(RELY) and approximate (Cornell) method is good.

EFFECT OF DIFFERENT TIME HISTORIES

The main work was done considering only one ground motion time history for each structure, which was scaled
to produce a variety of loading intensities.  A very limited study was done on the effect of the ground motion
frequency characteristics by repeating some of the slender shear wall analysis using the same input time history
run in reverse order.  This had very little effect on failure mode 1, but a more significant effect on failure mode
2, where the associated failure probability increased by about 50%.

‘CLIFF EDGE EFFECTS’

As previously discussed, a significant aspect of the analytical work was the appearance of a sudden change in
response in the slender shear wall , at a critical earthquake intensity, above which the incremental plastic strain
in the steel became concentrated at the bottom of the plastic hinge region.  The question then arose as to whether
this behaviour might be associated with a ‘cliff edge’ effect.  The answer depends partly on what this is taken to
mean.

A cliff edge clearly exists in the sense that there is a significant change in structural response affecting
resistance, which occurs at a critical ground motion intensity and an associated probability of occurrence.  Both
approximate and rigorous methods were able to allow for this rapid change in response by assuming that two
separate failure modes (modes 1 & 2) were involved.  However, a more obvious definition of a ‘cliff edge’
would relate to the cumulative probability of failure  function (CPF) curve, shown for the slender shear wall
from the rigorous analysis in Figure 4.  A cliff edge by this definition would involve a sudden increase in the
slope of this curve at a certain return period, which (because the contribution of failure mode 2 is relatively
small) did not occur.
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Figure 5:  Cumulative probability function for hypothetical structure

However, were the CPF for failure mode 1 to be modified to the hypothetical case shown in Figure 5, then a
‘cliff edge’ by this definition would indeed have occurred

The practical value of identifying such a cliff edge is less clear (and it may be noted would not be revealed by
the Cornell method, since this does not involve direct calculation of the CPF as an intermediate stage).  What
really matters is that all failure modes which make a significant contribution to failure should be identified.
Analyses which do not consider intensities of motion sufficiently large to trigger all such failure modes are
clearly deficient.  The present case of strain distribution in plastic hinges is one possible example.  Others might
be critical intensities which triggered liquefaction in soils, P-delta instabilities in structures or brittle failures of
any type.  The approximate Cornell method is highly suitable, both for establishing whether a particular failure
mode is significant or not (ie whether it contributes significantly to overall failure probability) and for checking
out design measures intended to ensure that a particular failure mode is not significant.  In most cases, failure
modes with an annual probability of failure less than 10-7 can be neglected; in the context of the nuclear industry,
this is likely to be the case for failures leading to large releases of radioactivity under the UK Health & Safety
Executive’s Safety Assessment Principles (HSE, 1991).  In Eurocode 1 (CEN 1996), the threshold annual
probability of failure is 10-6.  It may then be observed that a ‘significant’ failure mode cannot be associated with
a return period greater than 107 (for HSE) or 106 (for EC1).  Failure modes triggered by ground motion
intensities with longer return periods can therefore be neglected.

CONCLUSIONS

Cornell’s approximate method for calculating structural reliability under seismic loading has been validated for
two simple structures.  The method shows great promise, particularly for areas of low seismicity (such as the
UK) where it will be most accurate. The advantage of the method is that it can be based on results from the
analysis of a single structural model, with structural properties set at their mean (best estimate) properties.  More
rigorous methods require a much larger number of analyses with the structural properties set at different values.
Use of Cornell therefore means that computational effort can be directed towards modelling the true non-linear
behaviour of a structure, which is likely to be important if ultimate failure is the limit state under consideration.

On ‘cliff edge effects’ (ie sudden changes in response for loading intensities beyond the design basis), it was
concluded that rather than identifying cliff edges, it is more important to ensure that all significant modes of
failure are accounted for in analysis.   Cornell’s method is highly suitable for establishing this.  In particular, the
ground motion intensity considered in design and analysis must be great enough to trigger all such modes of
failure, and Cornell can be used both for checking whether this is the case, and for investigating design measures
intended to prevent potentially troublesome failure modes from becoming significant.
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