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SUMMARY

A parametric study on the inelastic dynamic response of single degree of freedom (SDoF) systems
characterised by different hysteretic behaviours is presented in this paper. Based on the review of
existing related works, some peculiar factors characterising the cyclic response of typical structural
components (i.e. non-linearity, hardening, pinching, strength degradation) have been preliminarily
selected. Numerical analyses, devoted to investigate the main parameters ruling the fatigue life of
the system, namely kinematic ductility and hysteretic energy, have been performed. Results,
obtained as average from a number of natural records, allow the phenomenological aspects having
a major impact on the seismic performance of the system to be identified.

INTRODUCTION

As it is well known, the great success of SDoF models relies mainly on two aspects: it is the simplest
conceivable structural system and it can be used for predicting linear elastic behaviour of MDoF structures
according to response spectrum concept. This kind of schematisation has been widely used for studying the
inelastic response of structures as well, even if with little theoretical and experimental background. Most of
recent studies are focused on the possibility to extend effective methods for dynamic analysis in the linear range
to the case of non-linear structures and this is still referred to SDoF system theory. However, the extension to
non-linear problems needs some difficult questions to be solved. In fact, the number of parameters defining the
response of a linear SDoF system is small and defined uniquely. On the contrary, the type of hysteretic
behaviour characterising the restoring force conditions non-linear SDoF system response. Besides, in non-linear
case there is an additional difficulty related to viscous damping modelling. In fact, in linear systems viscous
damping is usually used as an equivalent source of non-linearity, in order to globally account for all dissipating
sources of the structural system (material damping, friction damping, material non-linearity). But if material non-
linear response is considered explicitly, viscous damping should be referred to other sources of energy
dissipation only, about which there is the largest uncertainty.

It is the author opinion that modelling of SDoF systems for predicting seismic response of MDoF structures is
still questionable, it being therefore worthy of further investigations. It has to be clearly understood what is the
relation between SDoF and MDoF systems (as in the undamped linear case) in order to correctly and uniquely
define the rules for choosing the equivalent appropriate SDoF system, by which obtain the desired information.
However, as a first step for the fully understanding of the problem, the modelling parameters for both damping
and hysteretic behaviour affecting the seismic non-linear response of SDoF systems should be identified. Then
such parameters should be accounted for when using SDoF system as analytical tool for investigating the
earthquake damage potential of actual MDoF structures.
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PREVIOUS STUDIES

First important studies concerning with seismic response of SDoF systems date back to the last fifties [Housner,
1959]. Ten years later Newmark and Hall [1969] published a fundamental work on linear elastic response
spectra. Since that date a large amount of research effort has been spent for the evaluation of seismic response of
linear SDoF systems, with particular attention to the influence of input motion, in some cases reflecting the
influence of site conditions. It is interesting to observe that the study of inelastic SDoF systems developed
contemporary to the elastic case. In fact, in 1969 Veletsos presented first studies on IRS (inelastic response
spectra). In 1975 Murakami and Penzien computed probabilistic non-linear constant strength response spectra
for SDoF systems with four types of hysteretic behaviour and subjected to 100 artificially generated earthquakes.
In 1979 Riddel and Newmark computed constant ductility IRS of 10 recorded earthquake ground motions
considering the effects of both damping and hysteretic behaviour. More recently, Minami and Osawa (1988)
conducted parametric studies on elastic-plastic response spectra for different hysteretic models classified
according to their strain energy-absorbing capacities. By analysing obtained results it seems that fundamental
inelastic response parameters, namely kinematic and cumulated ductility, are slightly influenced by hysteretic
assumptions for models belonging to the same group. While significant differences can be observed when
radically changing the type of dissipative behaviour (for example going from a bilinear full-dissipative model to
a partial-dissipative pinching-type one). In 1992 Krawinkler and Nassar studied average IRS of bilinear and
stiffness degrading SDoF systems. They concluded that IRS are only slightly modified by the type of hysteretic
model considered. Extensive parametric studies were conducted by Fajfar et al. [1989, 1992, 1994] in almost ten
years of research activity. The influence of both damping and hysteretic modelling on four types of interrelated
constant ductility non-linear response spectra (strength, displacement, input and hysteretic energy) was
considered. Their relevant results show again that hysteretic model influence significantly inelastic response only
when changing radically the type of dissipative behaviour (with or without pinching of hysteretic cycles), while
the influence is slight in case of substantial similar shape of hysteretic cycles. Besides an important influence of
damping modelling was observed. These conclusions are drawn in comparison with results of influence of input
earthquake motions, which is more significant. Cosenza and Manfredi [1994] carried out a study on the influence
of stiffness and strength degradation on constant ductility strength reduction factor spectra. It was concluded that
damage phenomena are somewhat influencing the design strength, but this is strictly related with the type of
input motion considered. However, this influence seems to be slight when compared with the one concerned
with other factors, e.g. the adopted collapse criterion.

In the framework of the European Research Project Copernicus-RECOS [Mazzolani, 1999] the authors
developed a mathematical model able to consider most of the relevant aspects of the mechanical behaviour of
beam-to-column steel joints in framed structures, as experimentally stated. In particular, the proposed model take
into account non linearity and kinematic hardening of the monotonic behaviour, cyclic hardening and cyclic
damage of mechanical properties, and, if it is the case, pinching of hysteretic cycles. In this paper the model is
applied to study inelastic dynamic response of SDoF systems.

EQUATION OF MOTION

The well-known equation of motion of SDoF systems writes:

gs maFxbxm −=++ (1)

where m is the mass, b the viscous damping coefficient, Fs the restoring strain-related force, x the displacement
of the mass relative to the ground, and ag the time-dependent ground acceleration. With the following positions:
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xy being a conventional yield displacement, k0 the initial stiffness of the system and PGA the peak ground
acceleration, equation (1) can be rewritten as:
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By introducing the ‘resistance level’ R* defined as follows:
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equation of motion finally writes:
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For a given hysteretic model (i.e. relationship ϕ  = ϕ(µ)), a fixed value of ω0, ν, R* and a chosen non-
dimensional ground acceleration time-history (ag/PGA), the step-by-step numerical integration of equation (5)
has been performed by means of the linear acceleration Newmark’s method [1959]. Thus we obtained ductility
(µmax) and non-dimensional hysteretic energy demand (eh = Eh/Ryxy, Eh being the actual hysteretic energy),
defined as the maximum values reached throughout the whole deformation history.

HYSTERETIC MODELS

Considered models can be grouped in two different types according to their dissipative capacities: 1) full-
dissipative-type models (without pinching) and 2) partial-dissipative-type models (with pinching). To group 1
belong classical elasto-plastic bilinear model (EPB) and a new specifically developed hysteretic fully non-linear
model (EPNL), whose behaviours are qualitatively shown in figures 1.a and 1.b, respectively. In particular, the
fully non-linear model was based on the generalised force-deformation relationship proposed by Richard and
Abbott [1975]. It should be noted that EPNL model may also account for strength degradation, due to both
repeated inelastic excursions and softening branches [Della Corte et al. 1999]. To group 2 belong classical
elasto-plastic bilinear with slackness model (EPBS) and a new developed fully non-linear with pinching model
(EPNLP) [De Matteis and Landolfo, 1999], whose behaviours are qualitatively shown in figures 2.a and 2.b,
respectively. Performed parametric study is addressed to evaluate the effect of non-linearity, hardening ratio,
cyclic damage and pinching on plastic engagement, measured through kinematic ductility µ and non-dimensional
hysteretic energy eh.
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Figure 1. a) Elasto-plastic bilinear (EPB) and b) Elasto-plastic fully non-linear model (EPNL).
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Figure 2. a) Elasto-plastic bilinear with slackness (EPBS) and b) Elasto-plastic fully non-linear with
pinching model (EPNLP).
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RESULT FORMAT

For the presentation of results, the following parameter R has been introduced:
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in which Sa,el is the pseudo-acceleration of the equivalent elastic system of period T = T0 (= 2π/ω0) and damping
ratio ν = 5%. In other words, R is the ratio of maximum elastic force that would stress the system (mSa,el) and its
actual strength (Fy). Five values of the reduction factor R were assumed in the parametric studies, namely 1, 2, 4,
6 and 8. However, only some results related to R = 1 (elastic system) and R = 6 (high inelastic deformation
demand) are presented in the following.

Analyses have been carried out considering 9 acceleration time histories, recorded on rigid and medium soil
conditions, corresponding to earthquakes registered in different world Regions. All accelerograms have been
scaled to the same PGA and then amplified by means of parameter R in order to consider increasing plastic
engagement.
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Figure 3. Normalised linear elastic pseudo-acceleration spectra for considered earthquake records (νννν =
5%).

For every value of R, non-linear ductility and non-dimensional hysteretic energy demand spectra have been
computed as mean values among all the earthquakes. The range of variation for the initial period of vibration (T
= T0) was assumed equal to 0.4 – 3 s, with time step equal to 0.2 s. Results are presented by varying the values of
several parameters of the above hysteretic models. The meaning of these parameters and their influence on
plastic engagement are discussed in the following.

OUTCOMES

Figures 4 and 5 refer to full-dissipative systems (EPB and EPNL) without damage of mechanical properties and
in absence of strain hardening. Considered parameter, named n in the figures, regulates the sharpness of
transition from elastic to fully plastic behaviour in EPNL model. Small values of n indicate strong non-linear
behaviour also for small deformation amplitudes, while for high values of this parameter the model approaches
the same behaviour of EPB model.

As it was expected, figure 4.a shows that there is no plastic engagement for R = 1 and that displacements of non-
linear systems are slightly smaller than displacements concerned with EPB model. This last observation is
justified considering the hysteretic energy dissipated by non-linear system as confirmed by energy demand
graphs (figure 4.b). For high plastic engagement (figures 5.a and 5.b), the influence of shape parameter is even
less important, allowing EPB model to be used for the evaluation of plastic engagement.
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Figure 4. Ductility (a) and non-dimensional hysteretic energy (b) demand for full-dissipative type models
characterised by various degrees of non-linearity (n), for R = 1.
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Figure 5. Ductility (a) and non-dimensional hysteretic energy (b) demand for full-dissipative type models
characterised by various degrees of non-linearity (n), for R = 6.

Figure 6 illustrates effects of kinematic strain hardening on the response of EPNL model (n = 4). Hardening ratio
h, which is defined as the ratio of post-elastic to initial stiffness, equal to 0, 5, 10 and 20% have been considered.

Generally, a decrease of ductility demand with increasing values of h can be observed. Hysteretic energy is
however increasing with h probably owing to the compensation effect due to wider hysteretic cycles for higher
hardening. Besides, it can be noticed that the influence of strain hardening is reduced as far as the period of
vibration increases, this being partially due to the shape of the single spectrum characterised by higher gradient
for lower periods of vibration. It is also interesting to observe that there are only slight differences in ductility
demand when changing the value of h from 0.05 to 0.20 but differences are much more pronounced when going
from h = 0 to h > 0. This means that the value chosen for the kinematic hardening ratio is not so important as the
assumption of h different from zero itself.
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Figure 6. Ductility (a) and non-dimensional hysteretic energy (b) demand for full-dissipative type models
characterised by various degrees of kinematic hardening (h), for R = 6.

Influence of strength degradation on ductility and non-dimensional hysteretic energy demand is illustrated in
figure 7, where n = 4 and h = 0 have been considered for EPNL model. Damage of strength has been simulated
adopting the following degradation rule:
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Fy,dam being the damaged value of initial resistance Fy, xu a conventional ultimate deformation and β an empirical
coefficient. This degradation law was found to be effective in simulating a number of experimental cyclic
deformation histories concerned with steel beam-to-column joints [Della Corte et al., 1999]. Appropriate values
for parameter β were found to be similar to mean values of the β parameter of the well known Park and Ang
damage model [1985]. Values for parameter β equal to 0.025, 0.05 and 0.15 have been therefore assumed, in
order to consider a low, medium and high rate of strength degradation, respectively. Besides, for all cases, a
fixed ultimate ductility µult = xult/ xy equal to 10 has been adopted.

From figure 7 it can be observed that the influence of strength degradation on both ductility and non-dimensional
hysteretic energy demand is quite limited. Only for high rate of strength degradation (β = 0.15) differences in
prediction may be occasionally significant.
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Figure 7. Ductility (a) and non-dimensional hysteretic energy (b) demand for full-dissipative type models
characterised by various degrees of strength degradation (ββββ), for R = 6.

Figure 8 shows the effect of softening branches in the hysteretic restoring force-deformation relationship (EPNL
model with n = 4, h = 0, β = 0). When a softening branch is activated strength degradation verifies during that
deformation excursion. The minimum level of strength reached along this decreasing branch was assumed to be
the new strength for successive deformation excursions [Della Corte et al., 1999]. Two values of ductility
activating softening branches have been considered, namely µinst = 3 and µinst = 5.

An increment in ductility demand with decreasing values of µinst can be observed in figure 8.a, while figure 8.b
shows the decrease of non-dimensional hysteretic energy with decreasing values of µinst, which may be due to the
compensation effect of increasing ductility and smaller size of hysteretic cycles. It can be noticed that any
influence for long initial periods of vibration vanishes and all curves in figure 8.a approach the same value of
ductility demand, practically coincident with the value of R.
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Figure 8. Ductility (a) and non-dimensional hysteretic energy (b) demand for full-dissipative type models
characterised by various levels of softening ductility (xinst), for R = 6.

Finally, figure 9 shows the variation of ductility and non-dimensional hysteretic energy demand going from full-
dissipative (without pinching) to partial-dissipative (with pinching) type of hysteretic behaviour. The two
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examined models were characterised by the same envelope curve (same initial stiffness k0, yielding resistance Fy,
shape factor n, hardening ratio h) but they differ for the shape of the hysteretic cycles. In particular, the pinching-
type model is characterised by the parameter F0p representing the intersection of hysteretic curves with the force
axis, normalised with respect to Fy. The analysed cases are referred to a constant value of this parameter, chosen
equal to 0.2, which corresponds to a strong pinching effect.

It can be observed that ductility demand increases when going from EPNL to EPNLP model, while hysteretic
energy demand decreases, due to compensation of increased ductility and reduced size of hysteretic cycles. Once
again, the effect of pinching on ductility demand decreases for increasing values of the period of vibration.
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Figure 9. Ductility (a) and energy (b) demand for full-dissipative (without pinching) and partial
dissipative (with pinching) type models, for R = 6.

It is interesting to observe from figures 10 and 11 the influence of the value chosen for viscous damping ratio in
evaluating inelastic response spectra. Obviously, both ductility and non-dimensional hysteretic energy demand
increase when decreasing values of damping ratios are considered. Differences are of the same order of
magnitude than those due to the most influencing hysteretic modelling parameters.
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Figure 10. Ductility (a) and non-dimensional hysteretic energy (b) demand for EPB model characterised
by different values of damping ratio (νννν), for R = 1.
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CONCLUSIONS

Effects of some modelling assumptions on ductility and non-dimensional hysteretic energy demand to SDoF
systems have been evaluated in this paper. On the basis of obtained results it can be concluded that kinematic
hardening, pinching of hysteretic cycle and strength degradation due to softening branches in the hysteretic
response are the three phenomenological aspects that have a major impact on seismic demand to the system. On
the contrary, the influence of fully non-linear behaviour is negligible, thus confirming the validity of simple
elasto-plastic bilinear models. As far as strength degradation due to plastic fatigue is concerned a slight influence
on plastic engagement has been observed. Moreover, the effect on ductility demand of most of parameters is
period dependent, being slighter for longer periods of vibration. The influence of viscous damping ratio is of the
same order of magnitude as the effect of the most influencing hysteretic parameters.

At the light of obtained results, it is apparent that the correct prediction of seismic response of SDoF systems is
quite complex. On the other side most of parameters affecting the hysteretic response of the structural
component have a limited influence on the global performance of the system. Therefore elastic-perfectly plastic
models, with or without slackness, seem to be suitable models for simplified seismic analyses of SDoF systems,
especially when used for obtaining information about the global performance required to MDoF systems.
Nevertheless, the adoption of sophisticated hysteretic rules could be justified for non-linear global analyses of
MDoF structures, by a detailed schematisation of all structural components, only one or few of these being
possible responsible for the collapse of the whole.
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