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NO-TENSION THEORY FOR SEISMIC ANALYSIS OF MASONRY STRUCTURES

A BARATTA1, A BINETTI2 And G VOIELLO3

SUMMARY

The paper presents a consistent theoretical formulation for structural objet made by no-tension
materials. The existence of the solution strongly depends on the loading pattern. Necessary and
sufficient conditions are discussed and a procedure to check the existence of the solution is
illustrated. Next the search of the solution is approached, based on the analysis of the
Complementary and Potential energy functionals. In the Complementary Energy approach it is
proved that the solution stress field obeys a constrained minimum condition of the complementary
energy functional on the set of all stress fields in equilibrium with the applied loads and keeping
the material in pure compression. In the Potential Energy approach, the primary solution is
composed by displacement field plus the fracture strain field. The latter must be positively semi-
definite in each point of the body; such a strain field is named an admissible fracture field.  It is
proved that the solution, in this case, obeys a constrained minimum principle of the Potential
Energy functional over the set of all displacement field and on the set of admissible fracture fields.
A number of computer codes have been implemented allowing to analyse by a F.E. procedure the
behaviour of structural systems acted on by forces simulating the action of earthquakes.

INTRODUCTION

The material organisation of the masonry tissue that one encounters in old buildings is very different from the
one that is commonly manufactured at present days in modern masonry buildings. Therefore, in dealing with
ancient buildings, it is worthwhile to enhance some basic features that are peculiar of such typology.

Without entering into the details of the many types of old masonry, it can be assessed, following Heymann’s
work [Heyman, 1966], that in many cases and for a number of structural  typologies the prevalent feature that
characterises such structures, and makes them dissimilar from actual concrete and steel structures, is quite
definitely poor capacity to resist tensile stresses. In a few words, the no-tension  masonry model assumes that the
material follows a fully elastic behaviour in compression, but cannot resist tension stress. In a solid the model
requires that equilibrium against external loads can satisfied by stress fields called here admissible stress fields,
that imply pure compression at every point of the solid. Assuming stability of the material in the Drucker’s
sense, compatibility of the strain field can be ensured by superposing to the elastic strain field  an additional
fracture field, that does not admit contraction in any point and along any direction. In other words the stress
tensor in any  point must be negative semi-definite, while the fracture strain field is required to be positive semi-
definite.

Analysis of no-tension structures proves that the stress, strain and displacement fields obey extremum principles
of the basic energy functionals. So the solution stress field is found as the constrained minimum of the
Complementary Energy functional, under the condition that it is admissible (i.e. negatively semi-definite at every
point and in equilibrium with the applied loads); on the other side solution displacement  and fracture strain
fields yield in solution the constrained minimum of the Potential Energy functional, under the condition that the
fracture field is positively semi-definite at any point.
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Both the above functionals are convex and subject to a set of convex constraints. With these conditions the
existence and uniqueness of the extremal points are guaranteed provided that at least one solution exists for the
constraint equalities and/or inequalities. This latter event occurs, according to the fundamental theorems of Limit
Analysis for no-tension structures [Como and Grimaldi, 1983], if the structure does not collapse under the given
loads. So the Limit Analysis of a no-tension structure acts as a tool to check both the static safety of the structure
and the existence of the solution of the equilibrium problem. After some Finite Elements model  of structure has
been produced. Limit Analysis can be set, like in perfect plasticity, as a Linear Programming problem, and can
be approached from the numerical point of view through the relevant algorithms like the Simplex one. After this
preliminary step, stresses, strains, fractures and displacements under the assumed non-collapse load pattern can
be searched by optimisation of the energy functionals. The stress approach, taking as primary unknown the
stress field, is founded on the minimisation of the Complementary Energy functional, while the displacement
approach is based on the minimisation of the Potential Energy functional and takes as primary unknowns the
joint displacement and fracture fields [Baratta, 1991]. Both methods have been implemented to work on some
F.E. model of uni- and bi-dimensional structures and can be operatively executed through appropriate procedures
for solving convex constrained optimisation problems. Practical experience has proved that search methods are
better implemented with reference to the Complementary Energy functional, while more sophisticated descent
methods, requiring derivatives of the objective function and the constraints, are more effective to treat the
Potential Energy, that enjoys more mathematical regularity than the Complementary functional. After the
solution has been obtained, a picture of the stress distribution, of the structure deformation and the localisation
and orientation of fractures can be observed, yielding data for safety evaluation by comparing the compressive-
shear stress with admissible ones, and a basis to verify the reasons of observed diseases and the effectiveness of
proposed reinforcements [Baratta and al., 1996].

In previous papers the above introduced procedure have been referred to for the typical structural systems for
masonry buildings under earthquakes loading; numerical examples, concerned with a NT bi-dimensional panel
with steel inclusions, have been lead out; a finite-element constant-stress/constant strain version of the problem
have been presented and a two-steps relaxation procedure have been implemented for the solution of the
discretised  problem by the Potential Energy approach [Baratta and  Voiello, 1996 –1997)]. On the other hand,
for  portal arches or multiple-arch frame structures, where the stress field is described by stress resultant at every
cross section (shear and normal force, and bending moment), the complementary energy approach has been
considered. In this case  the stress-approach can be managed with some ease, and proves to be more effective
and less cumbersome than the displacement-approach [Baratta and al., 1998].

APPLICATION OF THE TOTAL POTENTIAL ENERGY METHOD : Masonry WALLS LOADED BY
IN-PLANE FORCES

Let E  be the Total Potential Energy functional defined on displacement field u(x ) and the fracture field  εεεεf(x) of
the system, the solution (uo, εεεεfo) in kinematic variables obeys to the conditions [Baratta  1991]
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subject to the condition that the fracture strain tensor εεεεf is positive semidefinite, (i.e. 0;0 21 ≥≥ ff JJ , with J1f

and J2f the first and second strain invariants). The Kuhn-Tucker necessary conditions for optimality in every
element are, on one side [Baratta and Voiello, 1997]
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with λ1 > 0, λ2 > 0 and λ1J1f= λ2J2f=0, and should be satisfied at the optimal point  (uo, εεεεfo). Considering that in
any generic element “e” one has
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From eqs.(2) e (3) the stress tensor (at the solution point) and the stress invariants are easily calculated. Since it

result ( ) ( ) 0Iand0I 21 ≥≤ ee ,  one can conclude that the stress tensor in every element is negative semidefinite in

solution. Moreover, consider  the fracture work ( )
ffL εεεεσσσσ ⋅=e  one can conclude that the fracture work in every

element is null in solution. It can be proved, moreover, that the stress tensor in every element is coaxial to the
fracture strain tensor in solution. Since the minimum point of the Total Potential Energy fulfills the
requirements on the stress and fracture-strain fields, characteristics of the No-tension material, it remains
concretely confirmed that the conditions for the minimum of the relevant functional coincide with the solution of
the equilibrium problem of a No-tension solid.

 The search for the solution of the structural problem can be pursued by employing the two-steps relaxation
procedure. [Baratta and  Voiello, 1997)]:

•  Constrained minimization (εf 
(e) ≥≥≥≥ 0) of the energy functionalwith respect to the components of the fracture

strain under prescribed nodal displacements;

•  Free minimization of the energy functional with respect to the displacement components, under fixed
fractures;

The first step is executed by reducing the stress in every element to respect the condition σσσσ(e) ≥≥≥≥ 0 (relaxation of
the tensile stresses). The scope is attained by introducing suitable fracture strains (εf 

(e) ≥≥≥≥ 0), thus violating the
equilibrium of the solid; the second step aims at restoring the global and punctual equilibrium of the system by
modifying the nodal displacements. The procedure starts from a reference equilibrium configuration that in the
present formulation is assumed to coincide with the linearly elastic solution  Il procedimento muove a partire da
una soluzione di riferimento che si assume coincidente con la soluzione elastica lineare. More precisely:

STEP 1: The minimum of the energy is searched for varying fractures and for the temporary displacement field

)(u,min)(u, f
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Considering that the Total Potential Energy is the sum of the values the functional assumes in the single
elements and the energy in the “e-th” element depends only on the tensor εεεεf

(e) relevant to the same element, apart
the nodal displacements that in this phase cannot be modified, the minimization of the functional with respect to
the strain field can be pursued by minimizing the relevant partial energy E (e) in every element. It is proved that
the minimum of the Energy under such conditions for the assigned displacement field corresponds to the fracture
strain tensor that leads the stress tensor in every element, inependently from each other, to verify the
admissibility conditions.

STEP 2: In this phase the system is re-equilibrated. In fact, the stress field corresponding to the assumed
displacements u and to the fractures, as updated in the previous step, are no more in equilibrium with the applied
loads. It is necessary therefore to update also the displacements u that, coupled with the previously modified ′εεεε f ,

should yield an equilibrated solution
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The scope is attained by a classical free optimization (for instance, the conjugate gradient method), keeping fixed
the fracture strains εεεεf.

This procedure is applied to a NT material panel, loaded with forces acting in its plane, modelled by a finite
element mesh. The structural model is a 560x840 cm  stone wall, 0.50 cm thick, with steel reinforcing inclusions
consisting of flat arches and string courses. The considered seismic coefficient varies from 0 to 0.6, according to
the  current italian seismic engineering code.
The convergence of the procedure is shown in Fig.1; one can notice that, as the structure gets nearer to the
collapse condition, while increasing the number of iterations, the rate of convergence decreases.

As, in the investigated cases,  the stress tension approximates the zero value following a rule of the type
α−+ ⋅= σσ io  where "i"  is the iterations number and σo is the order of the maximum traction stress in the linear
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elastic field,  one can point out that the exponent "α" decreases rather quickly when "c"  tends to the collapse
value (Fig. 1d), showing that, in such a situation, the convergence turns more difficult as one can
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Figure 1:  Traction stress convergence

Figure 2a: The considered masonry wall                            Figure 2b: The deformed configuration
              (Displacement Magnification. 40:1)

Figure 2c: The fractures distribution Figure 2d: Compression isostatics

In Fig. 2a the discretised model of the considered masonry wall is depicted, while its instantaneous deformed
configuration, for a seismic coefficient of 0.3, is shown in Fig. 2b; in Figs. 2c and 2d the possible distribution of
the  fractures and the compression isostatics are reported.



25805

In Fig. 3 the first floor displacement is diagrammed versus the seismic coefficient and a comparison is reported
with the corresponding displacement in the linear elastic phase and  with the displacement (U*) calculated by
following the procedure shown in the mentioned standard-code (POR-type approach).

Figure 3 : 1st  floor displacements

3. APPLICATION OF THE COMPLEMENTARY ENERGY METHOD : NO-TENSION  MULTIPLE
ARCH-SYSTEM

The procedure of calculus for the verification in exercise and/or for the interpretation of a pronounced fracture
multiple arch-system is based on the minimisation of the Complementary Energy functional.
In the following an example is illustrated with reference to a three span structural system as in Fig. 4. The no-
tension assumption requires that in solution the joint field of bending moment and normal force yields a pressure
line (i.e. a funicular curve) that is interior to the arch profile at every cross section [Baratta and al., 1998].
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Figure 4:  The load pattern

With reference to the scheme in Fig.5  the stress fields can be expressed as a function of the static redundancies
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In eq.(6) , with reference to the equivalent isostatic structure (Fig. 5), Noy, Moy  are the characteristics due to
vertical permanent loads;  Nox, Mox  are the characteristics due to load components deriving from a horizontal
acceleration equal to the gravity acceleration, and Ni, Mi  are the characteristics induced by the unitary static
redundancies, and “c” the seismic factor affecting horizontal loads
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Figure 5:  The statically determinate equivalent scheme:  a) Structural redundancies b) Tie-rods
redundancies

Ineqs. (6) mean that the funicular curve is everywhere interior to the arch profile, a necessary condition for the
existence of equilibrated stress fields of the type in Fig. 7.

As shown by eq. (6), the constraints on the redundant force variables (X1, X2,....X3N) are all of a linear type. If

any solution of such inequalities exists, the set  D0 of admissible stress fields is not empty (the classical bilinear

distribution of normal stres on the cross-section exs), and equilibrium of the structure is possible. The minimum
of the convex function U(X1, X2, ..., X3N), which represents  the Complementary Energy  obtained by adding to
the Energy Elastic term to the potential produced by the possible settlements of the foundation basis, over the
convex set X defined by inequalities (6), is a problem of convex optimisation, and the equilibrium NT solution
exists and is unique. It follows that, by the principles of Masonry Limit Analysis [Como and Grimaldi,1983], if
no solution exists to ineqs. (6), the structure is over the failure condition and it is condemned; if, on the contrary,
any solution exists, an equilibrium configuration, possibly fractured, exists and must be found. The problem of
the research of the initial value of the static redundancies is solved by a Linear  Programming approach.
Inequalities (6) are as 3m linear inequalities in the 3N+1 redundant force variables “X1, ..., X3N” and “c”, while
the objective function to be maximised  (minimised), is reduced to the coefficient “c”. The solution of this
optimisation problem yields the seismic collapse factor cf of the structure and an admissible stress field for any
value of the seismic factor lower than co. If any factor c < cf is assumed, the previous search yields an initial
feasible set of redundant unknowns Xi corresponding to an admissible stress field, whose compatibility is
consequently ensured through minimisation of the Complementary Energy. The latter optimisation is pursued by
a procedure of the “search” kind, which operates only on the energetic functional values and does not require the
introduction of derivatives. The displacements are obtained in a further step by integration, ignoring the shear
strain. A calculus code has been implemented and applied to some examples, including in the analysis some
elements that have not been explicitly introduced in the basic scheme, and the relevant solutions are discussed
with reference to the classically known features of the behaviour of masonry structures.

Consider the portal arch in Fig. 4, with N = 3, the elasticity modulus, Ec , constant and the following data,
referred to a Fig. 5 with rectangular cross-section  with basis b= 100 cm.

L1 (m) L2 (m) L3 (m) F1 (m) f2 (m) F3 (m) R1 (m) R2 (m) R3 (m)
6.5 8.85 6.5 2 2.5 2 3.64 5.17 3.64

b1 (m) b2 (m) b3 (m) B4 (m) h1 (m) H2 (m) h3 (m) h4 (m) S (m)
1.5 2 2 1.5 4 5 5 4 0.6

W1(Kg) W2(Kg) W3(Kg) W4(Kg) M1 (Kgm) M2 (Kgm) M3 (Kgm) M4 (Kgm)
40000 40000 40000 40000 5000 5000 5000 5000

 Fig. 6.a  presents the structure's state at the failure threshold, for c = cf = 0.12. It is possible to verify (Fig.6.a)
that the funicular is everywhere interior to the arch profile, and that the procedure yields perfectly compatible
rotations
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and displacements (Fig.6.b). The displacements in Fig. 6.b  are amplified by a factor α = 50. Collapse takes
place at the level cf = 0.12.

     

Figure 6:  a)  The funicular curve (c = 0.12)     b) Deformation  (c = 0.12, umax = 0.0164 m)

STRUCTURAL SYSTEM WITH THREE SPANS REINFORCED BY TWO TIE RODS AT THE
INTRADOS

In this section, the behaviour of the portal is demonstrated, after the installation of two tie rods.  Fig. 7.a   shows
the condition of the structure, under the same value of c = 0.12  as

     

Figure 7:   a)  The funicular curve (c = 0.12)     b)  Deformation  (c = 0.12, umax = 0.0093 m)

the former case. It is possible to observe that the tie rods produce a very significant improvement in the
structure's performance, curvatures are very moderate, and displacements much smaller. Note that displacements
in Fig. 7b are amplified by a factor α = 300. The efficiency of the installation of the tie is confirmed by the limit
behaviour.

Collapse takes place at the level cf = 0.20, much larger than for the unreinforced arch.

STRUCTURAL SYSTEM WITH THREE SPANS REINFORCED BY THREE TIE RODS AT THE
INTRADOS

In this section, the behaviour of the portal is demonstrated, after three tie rods have been installed. Fig.8.a shows
the condition of the structure, under the same value of  c = 0.12 as in

the former cases. It is possible to observe that the three tie rods produce, obviously, a further improvement in the
structure's performance: sections are not partialised, curvatures are improved  and displacements are smaller.
Note that displacements in Fig. 8.b are amplified by a factor α = 300. The collapse factor reaches the level of cf =
0.24, larger than previous ones.

     

Figure 8:  a)  The funicular curve (c = 0.12)         b)  Deformation (c = 0.12, umax = 0.0079 m)

Finally, in Fig. 9  the behaviour of the portal arch, for each of the three cases investigated is summarised. Every
diagram plots the proceeding of the maximum horizontal displacements, and of the maximum compressive stress
versus the lateral load factor.
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Figure 9: a) Stress; b) Drift , vs. seismic factor

CONCLUSIONS

In the paper, a theoretical support to the analysis of structures made by NT material has been presented, aiming
at a gross modelling of the behaviour of masonry structures.

The approach is rather effective, in view of the current analysis of the safety of masonry buildings, under
ordinary vertical loads or  even horizontal actions intended to simulate the effects of earthquake shaking. The
problem, very frequent in the practice of the old masonry buildings has been treated in detail, showing how the
model gives account of the influence of intentional reinforcements like ties in the arches or flat arches and string
courses in laterally loaded walls. In particular, the effectiveness of such measures has been proved, both
producing a very significant attenuation of stresses for moderate loading and yielding a high improvement in the
collapse value of the lateral load factor.
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