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SUMMARY

The common modeling assumptions in analyses of structural response considering the effects of
soil-structure interaction are discussed, as well as their consequences.  Issues such as spatial
variability of strong ground motion and flexibility of building foundations are specifically
addressed.  Results are shown for the case when spatial variability is considered, but inertia
interaction and kinematic interaction between the different footings is neglected.

INTRODUCTION

The term soil-structure interaction describes a collection of phenomena that are caused by the flexibility of the
foundation soils. Their proper consideration requires introduction of additional degrees-of-freedom in the
formulation of the equilibrium equations of a system and, depending on the model, it may call for methods of
solutions based on wave propagation.  In general terms, the soil-structure interaction will lengthen the apparent
period of the system, will increase the relative contribution of rocking excitation of ground motion to the total
response, and will usually reduce the maximum base shear [Todorovska and Trifunac, 1992]. The benefits of
including soil-structure interaction in the design of structural systems result from the scattering of incident wave
energy from the foundation, and from additional radiation of structural vibration energy into the soil.  When the
soil surrounding the foundation experiences small to modest levels of nonlinear response, the soil-structure
interaction will lead to further significant loss of the available input energy.  Since this energy loss occurs
outside the structure, if will be one of the important challenges for future design of earthquake resistant
structures to quantify this loss and to exploit it in design.

The simplest way to consider soil-structure interaction effects is to assume that the building is supported by a
rigid foundation.  This results in minimum number of additional degrees-of-freedom (three translations and three
rotations), but may lead to restrictive and too simple representation.  Studies which model flexible foundations
are rare [Iguchi and Luco, 1982 Liou and Huang, 1994] and difficult to evaluate in absence of strong motion
records.  As far as we know, there exists no strong motion program to document distortions and warping of
foundations of structures during the passage of strong seismic waves [Trifunac et. al, 1999].  Experimental
studies of soil-structure interaction are best conducted in full-scale, in actual buildings during microtremors
[Trifunac, 1970a,b; 1972], forced vibrations [Blume, 1936; Hudson, 1970], and earthquake excitation [Luco et
al., 1987].  It is difficult to conduct soil-structure interaction tests in laboratories, not only because of the
constraints imposed by the need to satisfy the similarity laws, but mainly because it is almost impossible to
model the half space boundary conditions for the soils.

The degree to which the soil-structure interaction modifies the foundation and structural response depends
mainly on the flexibility of the soil relative to the foundation and to the structure.  In predictions by analytical
and numerical models, it also depends significantly on the modeling assumptions. The rigid foundation
assumption, for example, exaggerates the effects of scattering and radiation, and may overestimate the damping
effects in the soil. It also overestimates the rocking and torsional response of the foundation.  Large foundation
rocking, coupled with the gravity forces and with the vertical accelerations, may be of concern for the stability of
the structure, and may be a possible system failure mode, due to dynamic instability.

The perfect bond assumption is violated to a varying degree even during a single exposure to strong earthquake
shaking.  Variations of this bond with time lead to “spreading” of the peak in the structural response transfer-
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function corresponding to the fundamental system frequency over a range of frequencies.  This effect can be
classified as a “geometric nonlinearity” [Trifunac et al, 1999]. The material nonlinearity of soft soils also
contributes to this “spreading” in the system transfer-function.  Both the bonding and the characteristics of the
material nonlinearity depend on the degree of consolidation of the soil, and it is reasonable to expect that these
change with time, depending on the history of strong and weak ground shaking.  This interpretation is supported
by the results of a recent study of a 7-storey reinforced concrete building in Van Nuys, San Fernando Valley,
California, of analysis of ground motion recorded at five stations of the Los Angeles and Vicinity Strong Motion
Network, also in San Fernando valley, from the 1994 Northridge earthquake and all recorded aftershocks (both
strong and weak), as well as during several other earthquakes preceding Northridge.

Of concern to this paper are the consequences of another effect ruled out by the rigid foundation assumption for
buildings, and that is the phase delay between the excitation of different support points at the contact between the
building and the foundation.  There are three basic questions addressing the relevance of this issue: (1) are the
consequences of this phase delay of any significance for the structural performance and integrity during strong
shaking, (2) are building foundations indeed “so flexible” that the concerns raised in (1) would apply, and (3) is
there a way to generalize and simplify these effects so that it is practical to introduce them in code procedures
and in description of ground motion for design. In the following, we review results on the effects of phased
excitation on response of analytical models and on experimental evidence for flexibility of building foundations,
a proposed procedure how to handle these effects in a simplified way, via the response spectrum approach, and
conclude with discussion of the research needed to fully address this issue and its consequences to design.

ANALYTICAL MODELING OF THE EFFECTS OF FLEXIBLE BASE ON BUILDINGS

One way to approach this problem is via wave propagation, and representation of the building as a continuum.
Variations of one such model were studied by Todorovska and Trifunac [1989; 1990a,b] and Todorovska and
Lee [1989]. These models are two-dimensional, are excited by horizontally propagating SH-waves, and neglect
the scattering and inertia interaction.  The base follows exactly the deformation of the ground.  However, this
representation of the building response can be used in a model that considers scattering and inertia interaction (if
the resultant wave motion at ground level is expanded in a basis of harmonic horizontally propagating waves).
Therefore, we can view their solution as response to a particular “mode” of the base excitation, just that the
actual participation of these “modes” will be affected by the scattering and radiation. The results for this model
show that nonharmonic “modes” of vibration also contribute to the response, and their participation is significant
when the horizontal velocity of the wave at the base corresponds to incidence beyond critical angle.  The
deformation of the structure is such that the top moves very little, but the first storey sustains significant
deformations to follow the motion at the soil.  In this case, the base flexibility is beneficial for the upper storeys
but may lead to critical conditions for the first storey columns. Figure 1a,b shows results for an anisotropic
building model excited by plane SH-waves, with incident angle equal to (a) and grater than (b) the critical angle
(for the interface between the building and the soil).  Parts (a) and (b) show snap-shots of the model response at
times equal to 0, ¼, ½, ¾ and 1×T,  the period of the excitation [Todorovska and Trifunac, 1989; Todorovska
and Lee, 1989].

EXPERIMENTAL EVIDENCE FOR FLEXIBILITY OF BUILDING FOUNDATIONS

An example of experimental evidence for flexibility of a building foundation is provided by detailed
microtremor measurements of a 7-storey building in Van Nuys (mentioned also in the introduction).  Figure 2
shows contours of relative amplitude and phase of the motion on the ground level in the building and in the area
surrounding the building.  The wave propagation is seen from the direction of the primary sources of the ambient
noise-a busy freeway to the west and a busy street to the north of the building.  The shape of these contours may
change depending on the time of the day, but the evidence of wave propagation will be there.  As mentioned in
the introduction, there are no such data from strong shaking, but it is reasonable to expect that this would occur
during strong motion.  This building was severely damaged during the 1994 Northridge earthquake, at such
locations and in such a way that the primary reasons are not clear at this time.  The building is supported by
friction piles, about 40 feet deep and spaced over a rectangular area 63 ft × 150 ft, symmetrically with respect to
the two axes of symmetry of the building plan.  In spite of the symmetry, recent microtremor measurements
suggest eccentricity in the foundation response (for primarily NS excitation, the foundation rotated about a point
outside and near the SE corner of the foundation; Fig. 2a).  This behavior is possibly due to past strong motion
excitation, uneven soil properties, or nonsymmetric damage of piles.  Reexamination of recorded response to
strong motion from several earthquakes also indicates asymmetry in the foundation response (Trifunac et al.,
1999).
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RESPONSE SPECTRA FOR DIFFERENTIAL MOTION OF COLUMNS

Trifunac and Todorovska [1997] searched for possibilities to describe the response of structures to differential
ground motion via the familiar concept of response spectrum.  The idea was that this concept is already familiar
to designers and that the effects of differential motions could be considered with only minor changes in the
current design procedures. To demonstrate first that this task is possible, they considered the simplest model, a
structure on individual column supports excited by horizontal motion only (along the length of the structure, as
shown in Fig. 3a).  The scattering and inertial interaction were neglected. They showed how to express the new
spectra in terms of the standard relative displacement spectra, the peak ground velocity, and a factor which
depends on the distance of the column from a reference point and on the shear wave velocity in the top soil layer.
Their model is shown in Fig. 3a.  It can be a one storey or a multi-storey structure, the response of which is
approximated by the first mode.   The purpose is to define, via response spectrum, the shear force in the first
storey columns.  The following describes this approach.

In Fig. 3a, He and ue are the height and relative response of the equivalent oscillator corresponding to the first
mode of vibration, with period T. The relative response of the first storey is d1=δ ue, where δ  is a factor that
depends on the height of the building and on the mode shape assumed.  Due to strains in the soil, the supports of
the columns move differently. For a 1-storey structure, the equation of motion is

0
2    2 uuuu rrr −=++ ωςω (1)

where ω =2π/T is the circular frequency of the structure, ζ is the damping ratio, u0 is the absolute displacement
of a conveniently chosen reference point on the ground, R, and ur is the relative displacement of the structure
with respect to reference point R. Eqn (1) is the classical equation of motion of a SDOF oscillator excited by

synchronous acceleration of the base 0u . The peak of the relative response, |ur
max|, is the spectral displacement

SD (T,ζ) for the motion u0 . The relative displacement of the columns is evaluated with the help of ur and the
relative displacement, ur

i, of the bottom of the i-th column with respect to the reference point R (see Fig. 3a).

Trifunac and Todorovska [1997] showed that u0 is a weighted average of the displacements at the base of the
individual columns, ui (the weighting factors are proportional to the stiffness of the columns). These motions are
not completely random during an earthquake, and can be interrelated, for example, via the strain field in the
ground [Trifunac and Lee, 1996; Todorovska and Trifunac, 1996; Trifunac et al., 1996]. For example, for a
symmetric structure (symmetric distance between the columns and symmetric distribution of stiffness of the
columns), R is at the mid-point of the structure.  Let xi be the distance from the i-th column to point R, and cx be
the “representative” phase velocity of the ground motion in the x-direction.  When distance xi for the end
columns (x1 and xn in Fig. 1) is small compared to the wavelength of ground motion, cxT, where T is the
predominant period of ground motion, the displacement at the base of the i-th column, can be approximated by a
second order Taylor series expansion of ui about u0
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When, the wave nature of the motion in the soil is ignored or is not present (for example the phase velocity
along the x-direction, cx, is infinite), all ur

i = 0 and the bases of all the columns move as u0.  Thus, ur
i represent

local relative motions caused by strains and by wave passage.

In eqns (2) and (3), ∂u /∂x is related to the axial strain, εxx.  For a site on parallel layers, in the absence of
complex three-dimensional interference and scattering, this strain component can be approximated by
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where βav is the average  shear wave velocity in the top 30 m of soil, v(t) is the particle velocity, a function of
time, and A is an empirical scaling function which can be estimated from numerical simulations of strong motion
at a given site.  Trifunac and Lee [1996] found A~0.4 for βav = 300 m/s for a site in Westmoreland, Imperial
Valley, California, and for synthetic strong motion consisting mainly of surface waves.  For illustration purposes
we will use this value of A in this outline.  In general, the function A will depend on the specific earthquake and
site conditions and should be evaluated for each site separately.  Therefore, (∂u /∂x) xi in eqns (3) and (4) can be
approximated by
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is the time (multiplied by factor A) it takes a wave propagating horizontally with velocity βav to travel from  the
reference point R (see Fig. 3a) to the base of the i-th column.  Using the same type of approximate analysis,
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where a(t) = ∂2u /∂t2
 is the acceleration of the ground. Then
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Using this representation of the relative motion of the base of the columns, it can be shown that the shear forces,
Vi, i=1,…, n, in the columns of a one-storey structure are equal to
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where v(t) = ∂u0(t)/∂t and a(t) = ∂2u0(t)/∂t2
 are the ground velocity and the ground acceleration for reference point

R moving as u0.

To design the columns for maximum shear, the maximum relative displacement ur(t) =v(t)τi+(1/2)a(t)τi
2 needs to

be estimated. Trifunac and Todorovska [1997] defined a three parameter relative displacement spectrum, SDC
(T,ζ, τ), as
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This spectrum can be computed on a routine basis during data processing and provided to the designer.  Then,
for a particular structure, the designer can evaluate τ for the end and other columns and read the maximum
relative displacement from the corresponding response spectrum. For a multi-storey building,
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where δ is a the ratio of the relative displacement of the first storey to the relative displacement of the equivalent
SDOF oscillator (d1= δue, see Fig. 3a). (For a one storey building, δ = 1). Assuming a shape for the first mode of
vibration, and relating the natural period to the height of the building (number of storeys), δ can be expressed in
terms of the period T of the fundamental mode. In eqn (11), ue is the response of the equivalent SDOF oscillator
for the multi-storey building to motion u0(t), and it can be calculated by the means of the Duhamel's integral.
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An approximation for the SDC-spectrum defined by eqn (11) is [Trifunac and Todorovska, 1997]

2/12
2

max
2

max
22

2

1
)(),(SD ),,,(

















++≈ ττςδτςδ avTTSDC (12)

where SD(T,ζ) is the classical relative spectral displacement and vmax and amax are the peak velocity and
acceleration of the motion of reference point R. Trifunac and Todorovska [1997] showed that the approximation
in eqn (12) is very good and, moreover, that the contribution of the terms with peak acceleration is usually small
and can be neglected. Fig. 3b shows SDC (T,δ,ζ,τ) for δ=1 (one-storey structure) and ζ=0.05, for different values
of τ.  The solid lines correspond to eqn (11) and the dashed lines to the approximation in eqn (12). These results
were evaluated for horizontal motion of the 1994 Northridge earthquake (M=6.7) record at station USC No. 53
(epicentral distance 6 km).  Fig. 3c shows the ratio SDC (T,δ,ζ,τ)/δ SD (T,ζ) for the same ground motion. It is
seen that this ratio is significantly grater than one for short period  (stiff) structures.  Fig. 3d shows the ratio SDC
(T,δ,ζ,τ)/ δ SD(T,ζ) for a multi-storey building, also for the same record.  The period of the fundamental mode of
vibration, T, and factor δ are related by assuming a familiar relationship between number of storeys and
fundamental period, and a shape for the first mode of vibration (for example, δ=1.5/(10T)). It is seen that the
spectral ratio increases at both ends of the spectrum.

The model above, can be extended to out of plane excitation, and will eventually be extended to be applicable to
consider more general excitation, e.g., Rayleigh waves. Also, it does not consider scattering and inertial
interaction, but as more knowledge is obtained on this subject, it will be possible to define some scaling factors
for these spectra to include in a simplified ways the associated effects.

CONCLUSIONS

A large body of literature exists on solving an elasto-dynamic problem (usually linear) to compute the
foundation input motion and frequency dependent complex stiffness coefficients under the assumption of a rigid
foundation.   The results of models that consider flexible foundation-soil interface are case specific and cannot
be easily generalized at this stage.  Further research is needed to consider more realistic models and robust
description of the associated effects, in a simple form applicable to design. Measurements of building response
to shaking with different levels of severity are crucial to assess the degree to which these effects occur in the real
world, and how they depend on the level of excitation.  There is a misconception that in the laboratory we can
simulate almost anything we want.  Shaking table tests and soil boxes may be useful to understand some
localized effects, but we should always bare in mind that the actual soil-structure interaction occurs in an infinite
medium, and that the wave nature of the excitation and of the radiation damping are very difficult to capture in
the laboratory [Trifunac and Todorovska, 1999].
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Fig. 1  Displacement response of a long building (represented by a homogeneous anisotropic plate; length−L, βx

/βz =2) to horizontally propagating monochromatic SH waves (phase velocity=cx), at times t=0, T/4, T/2, 3T/4
and T (T−period of motion). (a) cx /βz =1 (grazing incidence) and η=L/(cxT)=1; (b) cx/βx =0.05 (incidence beyond
critical angle) and η=L/(cxT)=2.
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Fig. 2 Contours of  (Ri, ref. (τ))max for NS motion (up) and vertical motion (down) (arbitrary normalized
amplitudes, shown by heavy lines), and (τ) (in seconds) of  (Ri, ref. (τ))max relative to the reference station (B2 for
NS motion and A5 for vertical motion .
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Figure 3.  (a) The model. (b)  The new displacement spectrum, SDC(T,δ,ζ,τ), for a one storey structure, and for
horizontal motion from the 1994 Northridge at station USC #53. (c) Ratio of th new and conventional
displacement spectra, for a one storey structure, and for horizontal motion from  the 1994 Northridge at station
USC #53.(d)  Same as in (b) but for a multi-storey building.


