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THE GUTSOF SOIL-STRUCTURE INTERACTION
John P WOLF* And Chongmin SONG?

SUMMARY

Salient features of soil-structure interaction are discussed. A criterion for the presence of radiation
damping in a site is formulated. The radiation condition at infinity of outwardly propagating energy
can for certain dynamic systems correspond to incoming waves. The consequences that the dynamic
behaviour of the unbounded soil depends on the dimensionless frequency, which is proportional to
the product of the frequency and the radial coordinate, are discussed. In addition, procedures to
analyse the dynamic soil-structure interaction are outlined, ranging from the approximate simple
physical models (cones, spring-dashpot-mass representations) for the soil to the damping-solvent
extraction method and to the rigorous scaled boundary finite-element methed. Convolution integrals
can be avoided by constructing a dynamic system with a finite number of degrees of freedom for
the soil. Extensions for moving concentrated loads and an increase in efficiency using a reduced
set of functions are presented. The damping ratio of an equivalent one-degree-of-freedom system
representing the interaction of the structure with the soil for a horizontal earthquake reflects the
effect of the cutoff frequency for a soil layer.

Salient features and analysis methods of dynamic soil-structure interaction are outlined together with potential
extensions. The selected topics are strongly influenced by the experience and personal preference of the authors.
Only concepts and results are stated. For details, the reader should consult the references.

INTRODUCTION

In a dynamic soil-structure-interaction analysis a bounded structure (which can be nonlinear), consisting of the
actual structure and an adjacent irregular soil if present, will interact with the unbounded (infinite or semi-infinite)
soil assumed to be linear (Figure 1). The most striking feature in an unbounded soil, which is never encountered in
a bounded medium is, in general, the radiation of energy towards infinity, leading to so-called radiation damping
even in such a linear system. Mathematically, in a frequency-domain analysis, the dynamic stiffness relating the
amplitudes of the displacements to those of the interaction forces in the nodes of the structure-soil interface of the
unbounded soil is complex for all frequencies. As is well known, this occurs when the unbounded soil consists of a
homogeneous half-space. But what happens to radiation damping for more general sites, e.g. when the properties
of the soil increase with depth?

To gain insight in radiation damping of unbounded soil (Wolf and Song 1996, Sections 5.2.11 and 5.2.12), it is
assumed that the shear modulus and mass density vary as
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6(r) = Go (%) (1a) p(r) =po (;) (1b)

where r is the radial coordinate measured from the centre @ towards infinity (Figure 1). Gp and pp are the values
at the structure-soil interface with ro. The powers g and m are real numbers, which can be selected as positive or
negative. The shear-wave velocity is written as
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In the derivation of the radiation criterion, another fictitious interface with radial coordinate r (dashed line in
Figure 1), which is similar to the structure-soil interface with 7y, is introduced. Between these two inerfaces a
finite-element cell is created. By repeating this procedure the unbounded soil can be represented by infinitely
many similar finite-element cells (infinite substructuring). When in the limit 7 — eo the inertial force of the cell
dominates over the elastic restoring force, energy is propagated and radiation damping exists. This is satished tor

1 - .g_ + T >0 (33) or c.;(r) < C,-QL (3b)
2 ry
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for all frequencies . When the elastic restoring force dominates over the inertial force, no energy 1s propagated

and radiation damping vanishes. This applies for

1-24:2 .0 (4a) or es(F) > co— (4b)
22 o

for all . In the intermediate case

g, m r
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Sto (5a) () = o (5b)
the elastic restoring force and the inertial force dominate for sufficiently small and large frequencies, respectively.
Thus, a cutoff frequency exists below which no radiation damping exists. Equations 3, 4 and 5 describe the
radiation criterion. For instance, it follows from equation 4, that ne radiation damping will occur in an unbounded
soil when the shear modulus increases sufficiently in the radial direction.
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Figure 1. Problem definition of dynamic soil-structure Figure 2. Semi-infinite rod on elastic foundation
interaction

2 RADIATION CONDITION REFERS TO ENERGY NOT WAVES

The radiation condition (Sommerfeld 1948) states that no energy may be radiated from infinity into the soil towards
the source. This does not necessarily mean that ourwardly propagating waves are prescnl, as is clearly demonstrated
in Schill (1988).

The semi-infinite rod with area A, madulus of elasticity £, hysteretic damping ratio { and mass density p on
an elastic foundation with static stiffness per unit length &, (Figure 2) represents the unbounded soil. The equation
of motion in the displacement amplitude #(w) is straightforwardly formulated (Wolf and Song 1996, Section A.2)
with & = w(w)et™ as

k
E(1 + 2i0) () xz — fu(m) + w’pulw) =0 (6)
For { < 1 the solution equals
u{w) = clemc?(xﬁc-“mﬁ? + Cza—mC;(‘u;; e (7a) wuf{w)= cle_'"iﬂ T 4 cze+mﬂrﬁ eI (7h)

with the phase velocities
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Equations 7a and 7b are interpreted for @ > @ and @ < @, respectively, with the cutoff frequency m, = /&g /{AD).
The integration constants ¢; and ¢z are determined for the two cases addressing the amplitudes at infinity. For
® > 0, the amplitude of the first term in Equation 7a tends to infinity for x — se, leading to ¢; = 0. The remaining
term with ¢3 corresponds to wave propagation in the positive x— direction e Hol-/c(0) § e outwardly propagating
waves, with an exponentially decreasing amplitude for x — ==, This behaviour is to be expected. For @ < w, the
amplitude of the second term in equation 7b tends to infinity for x —+ co, leading to ¢2 = 0. The remaining physically
acceptable term with ¢; corresponds to wave propagation in the negative x— direction gHolers/del) e incoming
waves, again with an exponentially decreasing amplitude for x — <. This behaviour is surprising.

For this latter case, the radiation of energy at infinity is addressed. For radiation of energy towards infinity,
i.e. in the positive x— direction to occur, the imaginary part of the dynamic-stiffness coefficient must be positive
(energy is dissipated, not created). The dynamic-stiffness coefficient §(0) determined e.g. at x = 0 relates the
amplitude of the displacement up(w) to that of the interaction force R(w) (Figure 2)

R(w) = §{w)uo(w) (9
Substituting equation 7b with £z = 0 in
R{w) = —EAuq,; (x) (10,

yields

() = v/EARy [1- 0?52 (1410 (1
8

For the case with incoming waves (@ < ©¢) it follows that the imaginary part is positive (The same also applies for
the other case @ > ®.).

Summarizing, for the damped semi-infinite rod on elastic foundation, the radiation condition expressing that
energy is radiated towards infinity corresponds te outwardly propagating waves for @ > 0, but to incoming waves
for < 0. The direction of the transmission of energy is thus opposite to that of the phase velacity for this latter
case. (The amplitude decays towards infinity in both cases). The significance of this example is much greater than
expected, as it also represents exactly a singlemode of an infinite modal expansion of the out-of-plane response of
a soil layer fixed on rigid rock.

3 DIMENSIONLESS FREQUENCY

It is well known that the dynamic stiffness of the unbounded soil is a function of the dimensionless frequency,
which is proportional to the product of the frequency o and the radial coordinate » (characteristic length of
the structure-soil interface), but not explicitly e.g. of w. In Figure 1 the radial coordinate of the structure-soil
interface, measured from the appropriately chosen centre O, equals o. It is permissible to select another in this
case similar structure-soil interface further away from the structure with the radial coordinate r (dashed line). The
region between the two interfaces is regarded as part of the structure. In this case the dimensionless frequency
associated with the dynamic stiffness will increase. For larger dimensionless frequencies the dynamic stiffness of
the unbounded soil is smoother. This can be illustrated addressing the dimensionless high-frequency expansion of
the dynamic-stiffness matrix (Song and Wolf 1998)

[S(@,r)] = (%)H (im;%[Cm]Jr K]+ 3 (iw%) i ,-]) (12)

=

where [C.], [Kw], [A;] are constants and s denotes the spatial dimension (=2 or = 3). The smoothness of [S]
for large wr makes the modelling easier, permitting approximate local transmitting boundaries to be used. For
an unbounded soil layer on rigid rock (Figure 3), the radial coordinate of the structure-soil interface is constant
(centre O at infinity). Thus placing the structure-soil interface further away (dashed line) does not help! This is
verified addressing the dynamic-stiffness coefficient in node 1, corresponding to a parabolic out-of-plane motion
on the vertical structure-soil interface (Figure 4), of an unbounded soil layer of depth 4 on rigid rock (Wolf 1998,
Section 3.9.3). The real and imaginary parts of the exact solution are shown as solid and dotted lines, respectively
{Rienrs 33
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Figure 3. Horizontally stratified soil layer on rigid Figure 4. Out-of-plane motion of soil layer on rigid
rock rock
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Figure 5. Dynamic-stiffness coefficient for viscons boundary. a. [/d =0.4. b. ] Jd=2
S11(ao) = K[ki1(ao) +iavc11{ao)] (13)

with ap = wd/ ¢, (shear-wave velocity c;). K represents the static-stiffness coefficient. Shifting the interface where
the dynamic behaviour of the remaining unbounded soil up to infinity is modelled approximately with viscous
dashpots by the distance ! denated as artificial boundary leads for harmonic excitation to errors which do not
depend on I/d (Figure 5 with results for two ratios). In general, for efficiency, the (global) interaction force-
displacement relationship of the unbounded soil should be formulated on the structure-soil interface.

4 SIMPLE PHYSICAL MODELS

Just as engineering beam theory in stress analysis is based on assumed displacement patterns instead of rigorous
elasticity solutions, the simple physical models present a major step towards developing a strength-of-materials
approach to foundation dynamics (Wolf 1994). The physical models consist of the following representations
(Figure 6}

1. Cones. Translational and rotational truncated semi-infinite cones are based on rod (bar) theory (plane
sections remain plane) with the corresponding one-dimensional displacement.

2. Spring-Dashpot-Mass Models with frequency-independent coefficients and a few internal variables. The
unbounded soil is represented by the same type of dynamic model as the structure, enabling the same
structural dynamics program to be applied.

3. Prescribed wave patterns in the horizontal plane. These are one-dimensional body and surface waves on the
free surface and cylindrical waves.

The described procedures satisfy the following requirements: Conceptual clarity and physical insight.
Simplicity in physical description (e.g., one-dimensional, not three-dimensional wave propagation) and in
application, permitting an analysis with a hand calculator in many cases. Sufficient scope of application (shape of
foundation, soil profile, embedment, piles). Sufficient engineering accuracy. The advantages lead to the direct use
in engineering practice for everyday design of machine foundations and structures founded on soil subjected to
dynamic loads (dynamic soil-structure interaction) such as earthquakes, explosions, waves, traffic excitation, and
so on. Possibility to check the results of more sophisticated analyses.

As an extension, the simple dynamic Green's function (Wolf 1994 Chapter 5) can be used to calculate the
vertical displacement w on the free surface of a hall-space (Figure 7) due to a vertical concentrated Ioad travelling
horizontally with the velocity v (Duvernay 1995). Two subsonic cases (v < shear-wave velocity) with Poisson’s
ratio = 0.25 are presented, For v < Rayleigh-wave velocity vg (v/vg = 0.99) the (dimensionless) displacement
(Figure 8) is symmetric fare and aft, i.e. with respect to the line 6 = 90° (shear modulus G). The exact solution is
specified in Lansing 1966. For v > vg (v/vz = 1.04),i.c. when the load outruns the Rayleigh wave, the distribution
of w changes abruptly (Figure 9). An infinite discontinuity occurs and the direction is reversed. Good agreement
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with the exact solution is again achieved. The transonic and supersonic cases perform equally well (results not
shown).
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Figure 6. Simple physical models to represent the unbounded soil
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Figure 7. Vertical concentrated load moving over the surface of a half-space
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5 DAMPING-SOLVENT EXTRACTION METIIOD

The unbounded soil is modelled based on finite-element concepts only (Wolf and Song 1996, Part II). A finite
region of the unbounded soil adjacent to the structure is modelled with finite elements. Damping, which is not
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present in the actual soil, is introduced artificially to reduce the amplitudes of outwardly propagating waves and
waves reflected from the outer boundary. This results in a dynamic-stiffness matrix for the strueture-soil interface
which depends upon outwardly propagating waves only. This matrix is then assumed to represent the unbounded
s0il with the same artificial damping. Finally, the influence of the introduced artificial damping is extracted,
whereby this very simple operation can be performed for each element of the matrix and for each frequency
independently from the others. The damping-solvent extraction method can also be applied directly in the time
domain.

6 SCALED BOUNDARY FINITE-ELEMENT METHOD
6.1 Concept

In this semi-anatytical boundary-element method based on finite elements only the structure-soil interface is
discretized with surface finite elements yielding a reduction of the spatial dimension by one. No fundamental
solution is necessary and thus no singular integrals must be evaluated and general anisotropic material can be
analysed. The radiation condition at infinity is satisfied exactly. No discretization of free and fixed boundaries
such as the free surface and interfaces between different materials is required. Thus, the scaled boundary linite-
element methad (Wolf and Song 1996, Part I, Song and Wolf 1997) not only combines the advantages of the
finite-element and boundary-element methods but also presents appealing features of its own.

A coordinate transformation from the Cartesian coordinate system £, ¥, { to the system with the dimensionless
radial coordinate & {1 € & < e for the unbounded soil} and the circumferential coordinates 7, £ on each
finite element on the structure-soil interface is performed (Figure 10). After applying a weighted-residual
formulation in the circumferential directions, the governing partial differential equations of linear elastodynamics
are transformed to the scaled boundary finite-element equation in displacement, a system of linear second-order
ordinary differential equations with the radial coordinate £ as independent variable

[E%E> {u(®)} 5 +((s = DIE"] - [E'] + [E']T)E{u(®) } ¢
+ (s —2)[E")" — [E*{u(E)} + @’ MUIEHu(&)} =0 (14)

{u(E)} are the displacement amplitudes at § corresponding to the degrees of freedom in the nodes on the structure-
soil interface, and s is the spatial dimension (= 2 or = 3). The coefficient matrices [E°], [E'], [E?] and [M?] are
caleulated and assembled similarly as the static-stiffness and mass matrices of finite elements on the structure-
soil interface. Equation 14 can be solved analytically (Song and Wolf 1998). The scaled boundary finite-
element method is analytical in the radial direction and numerical in the finite-element sense in the circumferential
directions parallel to the boundary.

ug+tug+hd +u

ig*ug
Figure 10. Scaled boundary transformation of Figure 11. Coupled dynamic model of structure and
geometry of surface finite element on structure-soil s01] with 3 degrees of freedom
interface

6.2 Reduced Set of Basc Functions

To increase the computational efficency of the scaled boundary fintc-element method, the displacerment amplitudes
{u(E)} in equation 14 are represented with a reduced set of base functions [®] and corresponding amplitudes
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Equation 14 is transformed to
(€182 (&) ez +((s — D] — [¢'] + [ THE{ME g +((s — '] = [D{v(®)} + 0 IE{v(E)} =0 (16)
with the coefficent matrices

[€”]) = [®]T [E°][@®] (17a) [m"] = [@]"[MO)[@] {(17b)

As the dynamic stiffness at low frequency dominates, in general, the dynamic response in soil-structure interaction,
the reduced set of base functions [®] is selected from the solution of equation 14 for statics. The first few
eigenfunctions determine [®].

7 MODEL WITH FINITE NUMBER OF DEGREES OF FREEDOM FOR UNBOUNDED SOIL

The interaction force-displacement relationship involves a convolution integral of the unit-impulse response and
the displacement. This integral has to be recalculated from time zero onwards for each time station in an analysis
of a transient. In this rigorous evaluation of the convolution integrals a larger computational effort (proportional
to the square of the number of time stations) and storage requirement result, which makes it unrealistic to perform
large practical (nonlinear) unbounded soil-structure-interaction analyses with many degrees of freedom on the
structure-soi! interface.

To reduce the computational effort the concepis of linear system theory can be applied. The methods
approximate the dynamic stiffness by a rational function in i@, corresponding to a dynamic system with a finite
number of degrees of freedom (Paronesso 1997, Wolf and Song 1996, Section 2.4). This results in a reduced
computational effort (proportional to the number of time stations) and storage requirement, as in the dynamic
analysis of a structure.

8 EQUIVALENT ONE-DEGREE-OF-FREEDOM SYSTEM

To study the response of a single-degree-of-freedom structure (structural distortion 1) with stiffness &, mass m,
height  and base radius a including the interaction with the soil (in addition horizontal base displacement ug and
rotation ¢) (shear-wave velocity c;, mass density p) to a horizontal earthquake motion ig (Figure 11), an equivalent
one-degree-of-freedom system can be constructed (Wolf 1985, Section 9.1, Wolf 1994, Section 7.2). Its equivalent

natural frequency ® and damping ratio £ follow from the following simple equations

I 1 1 1

- (18)

= =—+ =+ 5=
@ o of(@) o©fd)

with the fixed-base frequency of the structure @y = /k/m and the horizontal and rocking soil frequencies for a
rigid structure

{ K.k,
wp(ag) = %(QO) (19a) o, (ag) = m(?ﬂ—) {19b)

where the horizontal and rocking dynamic-stiffness coefficients of the soil equal
Snlao) = Kukn(ag) (1 + 2il,{an) + 21;) (20a) Se{ao) = Kk, (ap) (1 +2i0(an) +2ik;) (20b)

with the radiation-damping ratios of the undamped soil

_ uoc;,(ao) an} = {‘10(’-‘,—((20)
180 = 2 ao) _— )= 2t o) @

The dynamic-stiffness coefficients of the undamped soil zre defined as

Su(an) = Ki(kn(ao) + 2iagch(ao)) (22a) S:(an) = Kr(k(ao} + Ziaoe+(an)) {22b)
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Figure 12. Equivalent properties and harmonic response (h/a = 0.67, m/ {pa®) =3,v=033,{=0.025,
¢, = 0.05) varying depth of layer. (a) Natural frequency; (b) damping; (c) displacement of mass relative to free
field motion u,

with the dimensionless frequency ap = Wa/c; and &g = Ba/c;. K, and K, are the static-stiffness coetficients. eis
the hysteretic material damping ratio of the soil.

I Py =9 ~o
E= 2t (1—%) Cyt s 4(00) + s ) 23)

with the hysteretic damping ratio { of the structure. { is equal to the sum of the contributions of the four damping
mechanisms.

The equivalent one-degree-of-freedom system, possibly defined slightly differently, has been used extensively
to analyse interaction effects when the soil is modelled as a homogeneous half-space. It can, however, just as well
be used to address a soil layer of depth d resting on rigid rock (Figure 11). Physical insight can be gained. For the
dimensionless parameters specified in the caption of Figure 12 ®/w, and { are plotted as a function of the sti ffness
ratio § = wsh /c5 in Figures 12a and 12b. For increasing § @/ decreases from 1, hardly being effected by the site.
{ increases significantly for the half-space, mostly due to radiation damping. For the shallow soil layer d/a =1
no radiation damping is activated, as ® lies for all § below the cutoff frequency of the svil layer, which is equal
to the fundamental frequency of the soil layer. { starts at { = 0.025 and tends towards £; = 0.05 (equation 23).
The amplitude of the maximum displacement of~the mass relative to the free-field motion (determined at & = @) is

plotted in Figure 12¢. The effect of the smaller { of the layer with d /a = 1 leading 1o a larger response compared
to that of the half-space is clearly visible.
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