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SUMMARY

The analysis of the damage states of a structure subjected to earthquake motions is considered. The
damage levels are quantified in terms of damage indices and seismic damage risk matrices, and the
losses associated with this kind of damages are evaluated using damage factor matrices. These are
matrices with stochastic entries which are obtained by means of adapted fragility models.

INTRODUCTION

There exists a large spectrum of sources to damages in structures, besides the “natural” degradation processes
due to ageing, corrosion, fatigue and others. Large earthquake motions can induce major damages to any type of
structures (buildings, lifelines, roads – highways,  bridges, industrial facilities including nuclear power plants,
and others).  An essential problem consists in the evaluation of the “remaining” reliability of a given structure or
of a given class of (similar) structures situated in a more-or-less homogeneous seismic area. The probabilistic
approach is unavoidable, and a wide range of probabilistic / stochastic models is available for the evaluation of
the reliability and seismic risk of structural systems (either under design or existing). This is just why an
appropriate selection of the models must be assumed, depending on the type of structure as well as on the nature
of the most likely factors able to induce structural damages. The damage risk due to earthquakes has to be
evaluated in terms of specific models, and the so-called (seismic)  fragility models  have gained a wide use, in
the last two decades, in the safety and risk analysis and prediction of structures and equipment in nuclear
facilities [1,2]. However, such models have proved, as well, their utility in the stochastic seismic damage
estimation of rather general types of structures like RC frames  [3,4].  The concept of  damage state  (due to
earthquake events) can be approached by use of fragility curves which express the conditional probabilities of
reaching or exceeding various damage states at given levels of ground motions.

Relationships between earthquake ground motion severity and structural damage, along with seismic site hazard
analysis, are frequently used for assessing possible regional losses due to earthquakes.  Ground motion - versus  -
damage  relationships characterize the level of damage reached by a specific class of structures as a function of a
relevant ground motion parameter (like the PGA or PGV).  Various types of matrices can be used for handling
available evidence on structural damages due to earthquakes of evaluated intensities. As a preliminary stage,
both the damage levels and the seismic intensities must be discretized within the intervals of  possible values.
This question is addressed in  Section 1, in connection with the fragility models adapted for the evaluation of
structural damageability :  the “classical” PGA capacity met in earlier papers like  [1]  is replaced by  d = the
damage state parameter, which covers an interval  [0,D] .  We go deeper into the quantification of structural
damageability in  Section 2, where damage risk functionals are also considered. A variant of Park & Ang
damage index is adapted for the damage risk quantification. Damage level risk matrices are presented in  Section
3, together with damage probability matrices. The latter ones are derived from the former in terms of a damage
threshold, and they can be used as matrix factors yielding a damage risk vector. The paper closes with a couple
of remarks on the applicability of these models under time dependent approaches.
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DAMAGE STATES AND SEISMIC FRAGILITY MODELS

The prediction of the lifetime of buildings in a seismic area needs some mathematical models to be built, able to
describe (as close as possible) the evolution of the structural damage. Certainly, any such model should take into
account as many sources of uncertainty / randomness as possible, but without becoming practically
unemployable. The randomness in some relevant structural parameters is taken into account in [5], with certain
assumed distributions for them. But it is hard to select the "best" (or - at least - the most appropiate) set of
structural parameters for describing the damage states induced by earthquakes in structural components and
systems.

To fix the ideas, let us first take into account a single damage state parameter as the story drift ratio  δ  for a
multistory building. It is assumed that the possible values of   δ  cover an interval   .  D  , ]0[ This interval has to be
partitioned into a finite number of subintervals :
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Each interval corresponds to a category of structural damage (from, e.g., no damage to severe damage).
Obviously, the random damage indicator  Δ  can take values in one of the subintervals of  (2.1) with a specific
probability. If the impact of the external actions would not be taken into account, such a probability would be
given by

                                              ( )  ,         1   for)()()[ 11 !≤≤−∈∆ −∆∆− k   d F  d F  =   d  ,d     P   kkk  k (2.2)

where  ∆F  is the cdf  (cumulative distribution function) of  Δ . But such an oversimplifying assumption cannot
be accepted. The damage state of the system essentially depends on the actions from the environment, including
the impact of earthquake motions. A parameter describing the intensity of the seismic excitation at the site of the
system has to be considered, for instance the PGA  A  like in the most fragility models. The possible values of  A
also cover  an interval  ),0[ α  which has to be partitioned :
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Conditional probabilities have now to be introduced for the damage indicator   d  d  i i ),[ 1−∈∆  provided

  a  a  A jj ),[ 1−−−−∈∈∈∈ :

                                                           ( )   ,q   =   a  ,a   A |   d   ,d   P jij -j  i - i )[)[ 11 ∈∈∆ (2.4)

for     i !≤≤1  and   .  m  j     ≤≤≤≤≤≤≤≤1  These conditional probabilities are the entries of a stochastic matrix

                                                                                      q   =  Q m  , ji ][ ! (2.5)

that can be called the damage level risk matrix (DLRM). Obviously, the entries of  Q  have to satisfy the
condition

                                                                                         q ji 
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(2.6)

since - for any earthquake input intensity - the structural component / system has to be in one and only one
damage state / damage level, falling in one (and only one) of the intervals :
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This model is connected with the concept of  fragility [1,7]. In most references, lognormal distributions are
assumed for the PGA capacity = the ground acceleration  A corresponding to failure, where : URAA εε
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the median of  A  and UR εε ,  are two random variables with unit medians that represent the inherent
randomness about the median and the uncertainty in the median value, respectively. The logarithmic standard
deviations of  UR εε ,  are UR ββ ,  . The three parameters     ,   ,A UR ββ

~
 are enough for expressing the failure

probability at a level at most equal to  a  of the ground acceleration :
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This model makes possible to evaluate the fragility (that is, the failure frequency conditional on a seismic

intensity a) of the structure by
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where  Φ  is the standard normal cdf and 0p  is the probability that determines a corresponding fragility curve

(    = p 5.00  determines the median curve). This formulation is adapted from  [2].

We are going to see how a fragility model could be employed for building an DLRM as the one given (2.5) with
the definition (2.4) of its entries  jiq  An exact application of expression (2.4) would be (according to the

definition of the conditional probabilities)
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Alternatively, a representative (central) value may be taken in each interval of the partition (2.3) :
    a  ,a     a j  j j ;)[ˆ 1−∈  then, the probabilities (2.4) of the stochastic matrix  Q  can be evaluated by

                                       .]~[]~[]~[]~[ 11 jijijijiji adPadPadPadPq ≥≥≥≥−−−−≥≥≥≥====<<<<−−−−<<<<==== −−−−−−−− ∆∆∆∆ (2.10)

Let us assume that a double lognormal format is acceptable for the damage index Δ:

                                                                  







====

R

Ca
CaF

β
Φ∆

)/(ln
),(  with

                                                        =   c  f C )(  .    
  / c  

       
 c  2 U 

 

U 


























β
∆−

βπ
)

~
(ln

2

1
exp

1
2

(2.11)

In  (2.11)  C  is the median capacity of the damage index  Δ, while  ∆
~

 is the median of  C .  Then we could

express the entries of the  DLRM  Q  as
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where   p i is the probability that determines the damage-fragility curve corresponding to the damage level

)1()0(     i       D ,     d i !≤≤≤≤≤≤≤≤∈∈∈∈  (see Eq.(2.8)).

The fragility model can be discretized in terms of DPDs (discrete probability distributions), as shown in [1]. Two
families of curves are defined as

                                                   ,   a   , p               ,   a      ,q           i ijj })({][})({][ >∆<≡∆>γ<≡γ (2.13)

where  ∆ is fragility curve of the DI depending on the seismic acceleration, while γj is a seismicity curve (also
known as a hazard curve).  A rather widely accepted analytical expression for  γ   involves  Fréchet's type II
“extreme value” distribution :

                                                                [[[[ ]]]]  , a     =    aA P=    a ασγ )/(exp1][)( −−−−−−−−>>>> (2.14)

where  =  σ  the size parameter and  =  κ  the shape parameter. Such an expression can be found, e.g., in [6].
Families of hazard curves and fragility curves are presented in  Fig.1.

      

   Fig. 1.   Seismicity curves   γj (a)   ;      Fragility curves  )(aj∆

The two families of curves can be composed resulting in a "two-dimensional" DPD
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Let us recall that the fragility curve ∆i is determined by the probability pi while a hazard curve γj will be entirely
determined by specific values on its size and shape parameters (σj , κj) The derivative under the integral in (2.15)
- following from the analytical assumption (2.14) - is the (specific)  pdf  of  Fréchet's distribution :
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As regards the probabilities  ,][ 1 kkk aAaPq ≤≤≤≤≤≤≤≤==== −−−−  the can be derived from  Eq.. (2.14) by

                −−−−−−−−====>>>>−−−−≥≥≥≥==== −−−− ])/([exp][][ 1
j

kjkkk aaaAPaAPq
κ

.])/([exp 1
j

kj aa
κ

−−−−−−−− (2.17)



27265

This probability that the earthquake intensity  A  falls in the interval  ],[ 1 kk aa −−−−   in represented in  Fig.2.

                                         

                                                     Fig.2   Probabilities of earthquake level intensities

At the same time , the hazard curve γj is assumed  –  under  the DPD approach  –  with its specific probability  qj

(not the same with  qk). The DPDs for the hazard curves are considered as independent from the ones for the
fragility curves ∆i. This independence justifies the expression of   pIj  =  pi  qj  given in Eq. (2.15) as the
probability of the fragility  ϕ I j.

SEISMIC DAMAGEABILITY QUANTIFICATION AND DAMAGE RISK FUNCTIONALS

The level of losses due to possible damage states usually quantified in terms of a damage factor that can be
defined (see, e.g., the Report ATC-13  [8]) as the ratio between the cost of repair and the total cost of the system
/ structure. Seven classes for such damage states (with respect to the losses) are considered in [8]. These damage
states are clearly dependent on the earthquake intensity, and they should be probabilistically described. A
(pseudo-)lognormal distribution can be used  for describing the seismic fragility of a structure with respect to the
earthquake intensity  MMI; we keep the notations  ∆, δ  (as in Section 2) for the damage factor, but we denote by
m∈ [0, M] the values of the  MMI. Thus, the fragility curve for the loss factor can be expressed as
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Certainly, such a model would be not complete without some distributional assumptions on the (damage)
lossfactor conditional on the parameter MMI = m. A Beta distribution can be accepted for this dependence.
Therefore, the conditional  pdf  of  Δ  would be

                                                        ( ) ( ) ( )    ,  
s,r B

  =  m f s  r 11 1
1 −−

∆ δ−δδ (3.2)

where  B  is Euler's Beta function. The density in (3.3) does not explicitly depend on  m, but this dependence is
implicit and the estimations can be found for low, mean and high damage factors.  Let us also mention that the
simple expression for the Beta  pdf  is obtained from the general one for q→r, r→s, a=0 and b=0 ;  in other
words, the damage loss factor is not measured in percents but it is normalized to  .  ]1,0[  Alternatively, we

suggest that the two parameters that characterize the pdf of (3.2) could be statistically estimated using the
expected value and the variance of the Beta distribution :
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Then, a damage factor risk matrix (DFRM) could be obtained, following the procedure presented in Section 2
with the necessary modifications. The damage factors are defined as percentages of replacement value / repair
cost with respect to the total value. Seven damage categories can be considered, and (for instance) five
earthquake intensity levels (resulting in 7-by-5  DFRMs). Then the probability of (earthquake induced) damage of
a structure to exceed the damage state di at a specified level of the ground motion intensity can be expressed as

( ) ( )  .  P   = yYI P =  yYdD P =  P k |j 

m 
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The probability in Eq.(3.4) cannot be directly evaluated. In many studies, a damage index  is  used  to  quantify
the damage level experienced by a structure. This random damage index  ID is a function  I   of structural
(strength) parameters and demand (load) variables. Thus ID=I(R,S).  In the model of [4], the demand / load
vector and the capacity vector are random scalar functions that respectively depend on the seismic variables  S
and on resistance variables  R  that is   L  =  L ( S )  &  C  = C ( R ).  The damage index   ID   is a composed
function through these ("synthetic") variables :

 .  ) ) ( ,  ) (()(  SL R  C  I  =   L  ,C  I   =   I D  (3.5)

Each conditional probability as in Eq.(4) results in a fragility curve for damage state  In many references, the set
of damage state is "linguistically" stated. For instance, it could be (as in [4])  :D={none, minor, moderate, severe,
collapse}. Such a qualitative description of the damage states is customary in the fuzzy approaches, and it gives a
suggestion for employing fuzzy models in the reliability evaluation of degrading structures. In terms of the
damage state set, this description would result in D=[d0, d1, d2, d3, d4]. But even when the approach is not fuzzy
but a quantitative evaluation of the damage levels is not available, the necessity of using damage indices
becomes evident.

The choice of proper (local and global) damage intensity indices is important, and a large diversity of such
damage measures have been proposed in more or less recent references. Naturally, the choice essentially depends
on the nature of the structure under analysis as well as on the type of loads the component / structure has to
support. One of the widely used index is Park & Ang's index ;  it is used in [3,4] for the stochastic seismic
estimation and Bayesian updating of fragilities in RC frames. It is a problem to evaluate to what extent the use of

P &  A index is proper for structures in  NPP's.  Let ( )  L  ,  =  D 1!!  denote the local damage intensity (index) at

location l or of component l among the  L  possible locations / components under observation. Then a global
damage intensity index can be naturally defined as the weighted average of Dl’s:
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In [4], such weights are associated to the  P & A  index
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 where =  E ! the energy dissipated at location .! 

The damage indices (including the  P & A  index) are often defined as taking values in the interval [0,1]. For the
five damage states model (earlier mentioned) this interval could be partitioned as  [ 0 , 1 ]  =  [0 , 0.2)  ∪   [0.2 ,
0.4 )  ∪

∪   [ 0.4 , 0.6 )  ∪   [ 0.6 , 0.8 )  ∪   [ 0.8 , 1 ]. If a weighted average as in Eq.(3.6) is applied on  local damage
indices Dl  ∈  [0 , 1]  it clearly follows from this equation that Dl ∈  [0 , 1] , too. There are other studies where
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weights are applied to several classes of structural typology in order to assess their relative importance, but these
weights Wi are not subjected to the second condition following Eq.(3.6), that is W I  ∈  [0 , 1]  but it is no more
required for their sum to be =1. Anyway, if applied on damage indices, such weights keep them in [0 , 1] : Dl   ∈
[ 0 , 1]  ⇒   WI  DI  ∈  [0 , 1] Problems like the short-term and long-term prediction of the damage states of a
structure are considered in [6]. The DSP model there presented also takes into account the behavior in time,
including Markov chains. Such an analysis gets beyond the methods we have considered in this contribution, but
we suggest that the DLRM's and DFRM's could be adapted for such time-dependent analyses.

LEVEL OF RISK AND SEISMIC DAMAGE PROBABILITY MATRICES

Another stochastic measure over the damage state set is the probability that the structural member / structure enters a
damage state  dj  after an earthquake occurrence provided its pre-earthquake damage state was  dI

                                               ( )  .   =   |    =  pre post ij j i dDdD P  = P (4.1)

Here, dI , dj  are called damage levels, but they may be clearly assimilated as damage states. In fact, the
probabilities in Eq.(4.1) are conditional probabilities, but with a different meaning than t0he ones in Eq.(3.4).
These probabilities can be considered as the entries in a stochastic transition matrix denoted  (as in [6]) by
CDTP -  conditional damage transition probability matrix. Hence

[ ]     =  CDTP
1,1 ++ mmjiP (4.2)

with  Pi, j  of   Eq.(4.1).  It is natural to extend the probabilities in  (4.1)  by  an  additioonal conditioning  on  the
earthquake intensity, resulting in twice-conditional probabilities, that is probabilities of damage state transitions
conditional on a certain earthquake intensity level :

( )  .    =    &    =   |    = post kiprej  kj i yYdDdD P  = P (4.3)

In Eqs. (4.1)  &  (4.3)  it is natural to assume that  dj  ≥  di  This implies that  PI j  = P (Dpost = dj  | Dpre = di  &  Y =
yk) if  j < i. Consequently, the CDTP matrix is upper-triangular. As regards the conditional probabilities in
Eq.(4.3), they would lead to a  3-dimensional matrix

   CEDTP [ ]
nmmkjiP 

,1,1
   = 

++
(4.4)

i.e., a conditional earthquake (-induced) damage transition probability matrix. These models could be turned into
time-dependent ones if the probabilities in Eqs. (4.1) & (4.3) are considered as being time-dependent :

.)(&)( tPPtPP kjikjijiji == (4.5)

Certainly, this dependence of time should be specifically modeled for the transition probabilities. Thus, the
conditioning event in Eq.(4.1) would have a larger probability for increasing  t  due to the aging process of the
structure or structural member. As regards the earthquake occurrence events, they clearly depend on the
earthquake hazard model accepted. The probabilities in Eqs.(4.5) should be respectively defined as

( ) ( ) ( )( )    , d   =  t D |  d  = t  + t D P  =   t  + t   ,t  P  ijj i ∆∆ (4.6)

and similarly for .),( tttP kji ∆+   These latter probabilities should be meant as follows : =∆+ ),( tttP kji   the

probability that the component / structure enters the damage state dj  at moment  t + ∆t  provided it has been in
state  di at  t ∈  (0 , T ) a nd an earthquake of intensity (class) Yk ( 1 ≤ k ≤ n)  has occurred at some moment τ ∈  (t ,
t + ∆ t ). The equations  (4.1) ,  (4.3)  &  (4.6)  could be reformulated by means of a damage intensity index, but
not this is the essential point.

A (3-dimensional) CEDTP matrix as in  Eq.(4.4)  can be turned into a (2-dimensional) seismic risk transition
probability matrix - abbreviated SRTP - if it is postmultiplied by a (column) vector of earthquake occurrence
probabilities. Let us recall that a vector of earthquake intensities Y = [ y1 … yk … yn]

T was earlier considered in
Section 2, and the probabilities associated with it can be written as P ( Y ) = [ P ( y1) … P ( yk) …P ( yn) ]

T,
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As earlier mentioned, the time-dependent risk analysis makes necessary to the entries in such a SRTP matrix to
depend on time. The seismic vulnerability indices of  [8]  seem to be more appropriate for such an approach. A
(seismic) vulnerability function is defined by
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τδτδ∫∫∫ ddydyfyf     =   T  ,d  F Y
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where  f (d | y)  is the conditional damage density function over the  Y  earthquake intensity and  fy ( y, t )  is the
time-dependent intensity density function. FD   (d , T )   in Eq.(4.8)  is the damage cumulative distribution
function over the lifetime / operational cycle  [ 0 , T ] of the component or structure. It becomes a time-
dependent damage cdf  if  T  is replaced by  t ∈  [ 0 , T ] in Eq.(4.8). The model given by Eq.(4.8) is applicable
when the variables there involved can be considered as being random, independent and continuous on their
definition domains. Certainly, specific distribu-tional assumptions must be assumed for these variables.

CONCLUDING REMARKS

The damage / loss states are discretized into a finite number of classes that induce a partition over the interval of
possible δ-values. The range of the earthquake intensity parameter is also partitioned, and the classical fragility
model is reformulated so that DLRM (damage level risk matrices) and DFRM (damage factor risk matrices) can
be defined and used. The discrete probability distribution (DPD) approach is also used, making possible an
alternative approach for estimating the probabilities of the stochastic DLR and DFR matrices.
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