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SUMMARY

This paper aims to develop an improved understanding of the critical response of structures to
multicomponent seismic motion characterized by three uncorrelated components that are defined
along its principal axes: two horizontal and the vertical component. The critical response is defined
as the largest value of response for all possible incident angles of the horizontal components with
respect to the structural axes. An explicit formula has been derived to calculate the critical
response. The ratio rcr/rsrss between the critical and the SRSS response --corresponding to the
principal horizontal components of ground acceleration applied along the structure axes—is
bounded by 1 and √(2/1+γ2), where γ is the spectrum intensity ratio for the  two principal
horizontal components. This implies that the critical response never exceeds √2 times the result of
the SRSS analysis, and this ratio is about 1.13 for typical values of γ, say 0.75. The upperbound of
rcr/rsrss  can be reached by axial forces in columns of symmetric-plan buildings or can be
approximated by lateral displacements in elements of unsymmetrical buildings.

INTRODUCTION

Translational ground motion is decomposed usually into three orthogonal components: two in the horizontal
plane and one in the vertical direction. When defined along its principal axes, the ground motion components are
uncorrelated. These principal axes are oriented such that the major axis is horizontal and directed toward the
epicenter of the earthquake and the minor axis is vertical (Penzien and Watabe, 1975). The components of the
ground motion along any other orthogonal system of axes are obviously correlated. Because the location of the
epicenter is not known, it is necessary to determine the structural response as a function of the incident angle (the
angle between the principal axes of ground motion and the reference axes of the structure) and design for the
largest or critical response. To determine this response, the CQC3 rule has been developed (Menun and Der
Kiureghian, 1998). Because the CQC3 equation provides a formula for determining the critical angles, it is not
necessary to determine the response for various values of the incident angle. The CQC3 equation, evaluated
numerically for these critical angles, provides the critical response. This paper aims to: (1) develop an explicit
formula for the critical response; (2) present an upper bound for the critical response; and (3) identify the ground
motion and system parameters that influence the critical response and the variation of the response with the
incident angle.

1. CRITICAL RESPONSE OF STRUCTURES

The excitation is defined in terms of spectra associated with the principal (uncorrelated) directions of the
translational components of ground motion, which are oriented along the two horizontal axes 1 and 2 and the
vertical axis z, as shown in Fig. 1. The reference axes of the structure are x, y and z. The angle θ  denotes the
orientation of axis 1 relative to axis x. The spectra are denoted as A(Tn) for the major principal axis 1, γA(Tn) for
the intermediate principal axis 2, where γ ≤1, and Az(Tn) for the minor principal axis z; Tn is the vibration period
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of a SDOF system. Accounting for the correlation among ground motion components, the mean peak total
response r(θ) is given by the CQC3 rule (Smeby and Der Kiureghian, 1985; López and Torres, 1997; Menun and
Der Kiureghian, 1998):
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where rx and ry are the mean peak values of response quantity r due to a single component of ground motion
defined by the spectrum A(Tn) applied first along the x-direction and then along the y-direction, respectively; and
rz is the mean peak value of r due the vertical component of ground motion defined by the spectrum Az(Tn). The
peak response, rk (k = x, y, z), to these individual components of ground motion is given by the response
spectrum method using the CQC combination rule (Wilson, Der Kiureghian and Bayo, 1981). The term rxy in Eq.
1 is a cross-term of the modal responses that contribute to rx and ry:
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where -ρij is the modal correlation coefficient for modes i and j. If the principal components of ground
acceleration are applied along the structural axes, the total response is given using Eq. 1 with θ = 0° when the
major principal component is oriented in the x-direction, and Eq. 1 with θ = 90° when the major principal
component is oriented in the y-direction. Therefore, r(θ=0°)={rx

2+(γ ry)
2+ rz

2}½ and r(θ=90°)={(γ rx)
2+ry

2+ rz
2}½.

These equations represent the SRSS combination of uncorrelated responses to the individual uncorrelated
components of ground motion. Here, the larger of these two response values will be defined as the SRSS
response, rsrss:

)]90(;)0([max !! === θθ rrrsrss (3)

Observing the structure of Eq. 2, it is apparent that rxy measures the correlation between responses rx and ry to
ground motions that are perfectly correlated. The correlation coefficient α  for responses rx and ry is defined as:
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which is defined for rx ≠ 0 and ry ≠ 0. It can be shown that α is bounded between –1 and +1 for any structure and
spectral shape (López, Chopra and Hernández, 1999). The limiting values of α , 0 and ±1, denote that responses
rx and ry  (to perfectly correlated ground motions) are uncorrelated and perfectly correlated, respectively.

Differentiating Eq.1 with respect to θ  and setting the derivative equal to zero gives the critical angles:
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Equation 5 leads to two values of θ  between 0° and 180°, separated by 90°, which give the maximum (rmax) and
minimum (rmin) response values. Note that the critical values of θ are independent of the spectrum intensity ratio
γ . To determine the critical response rcr, usually the two numerical values of θcr are substituted for θ  in Eq. 1.
We can, however, derive (López et. al., 1999) an explicit equation for rcr by recognizing that they represent the
combined response to three components of ground motion acting in directions 1, 2 and z, with θ = θcr, as shown
in Fig. 1:
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The explicit formula given by Eq. 6 is convenient for design purposes because it avoids computation of the two
critical angles, as required in previous works (Smeby and Der Kiureghian, 1985; López and Torres, 1997), and
provides a rational basis to determine the critical response from rx, ry, rz and  rxy. Eq. 6 is not computationally
demanding, requiring calculation of terms that are readily available if the conventional CQC modal combination
rule is implemented in the dynamic analysis software to calculate rx and ry. The ratio of the critical response due
to horizontal ground motion, Eq. 6 with rz = 0, and the response from SRSS analysis (Eq.3), is given by:
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wherein β  is the response ratio defined as β = ry / rx. The denominator in Eq. 7 has two alternatives expressions:
the first is valid if r(θ  = 0°) ≥ r(θ = 90°), implying that rx ≥ ry or β ≤ 1; the second applies if r (θ  = 0°) ≤ r(θ  =
90°), implying that rx ≤ ry or β ≥ 1. Note that the ratio rcr/rsrss depends on dimensionless parameters α, β, and γ. It
can be shown that rcr/rsrss is identical for β values that are reciprocal of each other. Figure 2 plots Eq. 7 as a
function of correlation coefficient α for several values of β and four values of γ . For γ = 1, rcr/rsrss =1,
independent of α and β, implying that the SRSS analysis is correct only if both horizontal components of ground
motion have the same intensity. For fixed values of γ < 1 and β, the response ratio rcr/rsrss is largest at α = ±1,
i.e., when responses rx and ry are perfectly correlated. Among all values of β, rcr/rsrss is largest for β = 1, i.e., rx =
ry. For α = 0, rcr/rsrss = 1, independent of β and γ, implying that the SRSS analysis is correct if responses rx and ry

are uncorrelated. For a fixed value of γ, rcr/rsrss is largest when α = ±1 and β = 1, simultaneously; the latter
condition implies that θc r = 45° or 135°. The critical response is bounded as follows (López, Chopra and
Hernández, 1999):
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The upper bound value, (rcr/rsrss)max, has values √2, 1.26, 1.13, and 1.08 for γ = 0, 0.5, 0.75, and 0.85,
respectively, implying that the critical response value does not exceed √2 times the result of the SRSS analysis,
as also noted by Torres, 1996. For typical values of the spectrum intensity ratio γ, say 0.75, this ratio is 1.13. Eq.
16 and the resulting conclusions are valid for any structure and any spectral shape.

3. ONE-STORY SYMMETRICAL-PLAN BUILDINGS

Consider the idealized one-story system shown in Fig. 3. The height of the columns is 0.4 times the bay length,
L. The first mode involves uncoupled motion in the x-direction at period Tx, and the second mode describes
uncoupled motion in the y-direction at period Ty. The damping ratio is assumed to be 5 percent in both modes.
The ground motion consists of two horizontal components. The major principal component is defined by the
design spectrum shown in Fig. 3. The selected response quantities are the base shear Vb in the x-direction and the
axial forces in columns a, b, c, and d, respectively (Fig. 3). It can be shown (López, Chopra and Hernández,
1999) that the correlation coefficient α (Eq. 4) for the axial force in columns a and c is given by +ρ12, and for
columns b and d is given by -ρ12, where ρ12 is the well-known modal correlation coefficient, for modes 1 and 2,
found in textbooks (Chopra, 1995). The ratio β  is equal to zero for Vb and equal to A(Ty)/A(Tx) for the axial
forces in columns a, b, c, d.
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The variation of Vb, normalized relative to the structural weight w,  with θ, is presented in Fig. 4a for systems
with Tx = 0.5 sec. and several values of γ. Because ry = 0 and rxy = 0 (Eq. 2), these results are not dependent on Ty.
The value of rx is 1.355 w. Note in Fig. 4a, if γ = 1, Vb is independent of θ. For a fixed θ, the response increases
as γ increases, indicating increasing intensity of the weaker component of ground motion. As we shall see later,
these two observations apply to all response quantities, but the following observations are restricted to Vb: for
any value of γ < 1, Vb is largest if θ = 0°and smallest if θ = 90°. The variation of the axial force Na in column a,
normalized relative to w, with θ, is presented in Fig. 4b for a system with identical periods Tx = Ty = 0.5 sec. For
this response quantity, rx, ry , and rxy  are all non-zero and influenced by both Tx and Ty. For this system, rx = ry =
0.1wA(Tx)/g , α = +1 and β = 1. Observe in Fig. 4b that the axial force for any angle θ  may be larger or smaller
than the axial force for θ = 0° or θ = 90°. The maximum and the minimum values of Na occur for incident angles
when θ = 45° and θ = 135°, respectively. As γ increases, the response value increases for all values of θ,
consistent with intuition.

For Vb, the ratio rcr/rsrss is always equal to one and θcr = 0° because Vb  is not affected by the y-component of
ground motion; ry = β = 0. For the axial force in column a, the ratio rcr/rsrss is presented in Fig. 5 for a system
with fixed Ty = 0.5 sec and Tx over a range of values. The SRSS analysis gives the correct critical response if the
vibration periods, Tx and Ty, are well separated, because the responses rx and ry are then essentially uncorrelated
(α ≅ 1). The ratio rcr/rsrss is largest for systems with Tx = Ty, as this condition implies that responses rx and ry are
perfectly correlated (α =1); the largest value of rcr/rsrss is equal to the upperbound in Eq. 8. Thus the discrepancy
between rsrss and rcr may be significant for systems with closely spaced periods of vibration and smaller values of
the spectrum intensity ratio.

4. ONE-STORY UNSYMMETRICAL-PLAN BUILDINGS

Consider an idealized one-story unsymmetrical-plan building with a rigid slab supported by any number of
lateral resisting elements oriented along directions x and y (Fig. 5). The system has three degrees of freedom:
translations x and y of the center of mass (CM) and rotation of the slab about the z axis.  The system has mass
and stiffness properties symmetrical about the y-axis but unsymmetrical about the x-axis, with e/r = 0.3, where e
is the distance from the center of rigidity CR to the CM; r is the radius of gyration of the floor about the z axis.
Damping ratio is 5%. Tx, Ty and Tθ are the periods of the corresponding symmetrical-plan system with e = 0, but
the mass and x-, y-, and θ-stiffnesses are identical to the coupled system: Ty = 0.66 sec., Tx and Tθ are varied, but
Tx/Tθ = 1. The principal components of ground motion are defined by A(Tn) and γA(Tn), respectively, applied at
incident angle θ (Fig. 6), where A(Tn) is the design spectrum of Fig. 5. Ground motion in the x-direction excites
the two natural vibration modes (periods T1 and T2) that contain coupled x-lateral and torsional motion. Ground
motion in the y-direction excites only the mode (period T3) that describes uncoupled motion in the y-lateral
direction. T1 , T2 and T3 are plotted against Tx/Ty in Fig. 7a.

We will study the edge displacement of the system in the y-direction (dx/r = 1.225 for a square plan). For this
response quantity, the correlation coefficient α, the response ratio β, the critical angle θcr, and the critical
response rcr  are computed and plotted in Figure 7 as a function of the uncoupled period ratio Tx/Ty, for a single
ground motion component (γ=0). The response has been normalized relative to the displacement of the
corresponding symmetric system , which is given by A(Ty) ÷ (Ty/2π)2 = 14.67 cm. Also plotted are the response
values r (θ = 0°) and r (θ = 90°),  for the two special cases of ground motion applied in the x-direction and in the
y-direction, respectively. The latter response is independent of Tx/Ty because the response to ground motion in
the y-direction, the axis of symmetry, is independent of Tx and Ty is fixed. For θ = 0°, the displacement increases
as Tx becomes larger. For the cases when Tx/Ty << 1 or >>1, the periods T1 and T2 are well separated from T3 (Fig.
7a), α approaches zero (Fig. 7b), θcr approaches 90° when Tx/Ty << 1 and 0° when Tx/Ty>>1 (Figure 7c), and rcr

approaches r (θ = 90°) for Tx/Ty << 1 and r (θ = 0°) when Tx/Ty >>1 (Fig.7d). On the contrary, observe that when
one of the natural vibration periods, T1 or T2, is equal to vibration period T3 in Fig. 7a, α is close to -1 or +1,
respectively, β  tends to 1, θcr is close to 135° or 45°, respectively, and rcr has two peaks that exceed the two
responses r (θ = 0°) and r (θ = 90°). As pointed out previously in Fig. 2, the simultaneity of β approaching 1 and
α approaching  –1 or +1 leads to an increase in the critical response with respect to the responses r (θ = 0°) and r
(θ = 90°),  as confirmed in Fig. 7d.
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The ratio of the critical value of the response to its SRSS value, rc/rsrss, is computed from Eq. 7 and plotted
against the period ratio Tx/Ty, in Fig. 8, for several values of γ. The largest value of rc/rsrss is 1.24 when γ = 0 and
Tx/Ty = 1.15. When γ = 0.5 and γ =0.75, the largest value of rc/rsrss is reduced to 1.15 and 1.08, respectively.
These values are below the upperbound values given by Eq. 8.

5. CONCLUSIONS

1. An explicit formula has been derived to calculate the critical structural response to two principal components
of horizontal ground motion acting along any incident angle and the vertical component of ground motion; the
critical response is defined as the largest value of response for all possible incident angles. This formula is
convenient for design purposes, especially code applications, because it avoids computation of the critical
incident angles.

2. The ratio between the critical value of response and the SRSS response—corresponding to the principal
components of ground acceleration applied along the structural axes—depends on three dimensionless
parameters: the spectrum intensity ratio γ between the two principal components of horizontal ground motion;
the correlation coefficient α of responses rx and ry; and  β = ry/rx. The correlation coefficient α depends on the
structural properties, but is always bounded between -1 and 1

3.The ratio rcr/rsrss is bounded by 1 and [2/(1 + γ2)]1/2, implying that the critical response is not grater than 1.13
times the SRSS response for typical values of the spectrum intensity ratio, say 0.75; and never exceeds √2 times
the SRSS response. For a fixed value of γ, the ratio rcr/rsrss is largest if β = 1 and α = ±1. The parametric
variations presented for one-story buildings indicate that this condition can be satisfied by axial forces in
columns of symmetrical buildings or can be approximated by lateral displacements in resisting elements of
unsymmetrical buildings.
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Figure 1. Principal axes of ground motion and structural axes.

γγγγ=0

1

1,25

1,5

-1 -0,5 0 0,5 1
αααα

rcr/rsrss

β=1
β=0.75, 1.33

β=0.5, 2

   
β=0, 

β=0.25, 4

γ=0.5γ=0.5γ=0.5γ=0.5

1

1,25

1,5

-1 -0,5 0 0,5 1αααα

γ=0.75γ=0.75γ=0.75γ=0.75

1

1,25

1,5

-1 -0,5 0 0,5 1
αααα

rcr/rsrss

γ=1γ=1γ=1γ=1

1

1,25

1,5

-1 -0,5 0 0,5 1
αααα

All values of β

∞
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Figure 3. One-story square building with a rigid slab and design spectrum.
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Figure 4. Variation of response with incident angle for several values of γγγγ; (a) base shear in x-direction, (b)
axial force in column a.
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Figure 6. One-story unsymmetrical building
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Figure 7. (a) Vibration periods, (b) parameters αααα and ββββ, (c) critical angle, and (d) normalized response for
a one story asymmetrical building.
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