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SUMMARY

Depending on the element stiffness to strength relationship, elastically identical structural systems
can have different strength distributions.  The seismic response of elastically identical structures
but with different strength characteristics were compared using time history dynamic analysis.  For
these torsionally susceptible single storey structures the maximum inelastic displacement and
ductility demands were obtained for the lateral load resisting elements.  A significant difference in
the response from one strength distribution to another was observed for all eccentricities and range
of system properties.  Systems that were balanced in strength with respect to the centre of mass,
but unbalanced in stiffness, responded in both translation as well as rotation even in the inelastic
range.  Elastically balanced systems, those with no stiffness eccentricity but unbalanced in strength
distribution, were also found to have a significant torsional response, resulting in increased
ductility demands on the stiffer and stronger element.  For all of the prescribed design ductilities
considered, strength eccentricity was found to influence the system response.  The stiffness as well
as the strength distribution were shown to have a significant impact on the overall system torsional
response and both should be considered in the analysis of torsionally susceptible inelastic
structures.

INTRODUCTION

Torsional behaviour of buildings when subject to lateral seismic ground motion continues to be observed as one
of the contributing factors in the damage, and at times collapse, of structures during earthquakes. To mitigate the
risk of additional demands on the lateral resisting system due to torsion, additional provisions are specified in
modern building codes. In areas of high seismicity, structures are generally designed for ductile response.
However, the torsional design provisions, as the lateral design provisions, are mainly based on elastic analyses.
Previous studies in torsional inelastic seismic response have focused on verifying the adequacy of current code
provisions through numerical modelling [Chandler et. al. 1997; Humar & Kumar 1998; Tso & Zhu 1992; Wong
& Tso 1994]. In most of these studies, the strength of the lateral resisting elements was based on design
calculations, such as the minimum requirements of equivalent static or response spectrum methods. Thus, the
strength of the elements became a function of a design procedure and was based on the elastic properties of the
system. However, as was pointed out by Paulay [1997, 1998 a,b,c], the calculated design strength of a structure
is related to its stiffness, although it is not directly proportional to it. The relationship between an element’s
stiffness and its strength is dependant upon the type of lateral resisting system, member dimensions and element
material properties and not on calculations from prescribed design procedures. As a result, different stiffness to
strength relationships in the elements are possible and it is these properties that control the strength distribution
in the lateral resisting system.

Traditionally, research into the torsional response of structures used the elastic stiffness distribution as means of
introducing irregularity and hence induce torsional response. Other studies [Paulay 1997, 1998 a,b,c] have
focused on the strength distribution alone as the controlling parameter in the torsional response of ductile
structures because the maximum demands occur when the structure is in the inelastic part of the response. In an



28502

effort to understand the inelastic torsional behaviour, the objective of this paper is to determine the influence of
the strength distribution on the inelastic response by using different stiffness-to-strength relationships for
torsionally susceptible structural systems. A number of simple relationships between an element stiffness and
strength are outlined. The seismic response of a single storey model of varying system parameters to encompass
a wide range of structural systems is analysed using time history dynamic analysis. The results presented here
are part of a collaborative research project between The University of British Columbia and The University of
Auckland. The findings of the numerical investigation will be used as basis for preparing an experimental model
for shake table testing.

STIFFNESS TO STRENGTH RELATIONSHIP

To illustrate one possible variance of strength to stiffness relationships, consider an elasto-plastic rectangular
element “i” of elastic modulus E , yield strength yf , section width ib , depth ih  and element length iL . The

lateral bending stiffness and strength of each element can be defined proportional to these properties for fix-fix

or fix-pin boundary conditions as 33 / iiii LhEbk ∝  and iiiyi LhbfV /2∝ . Assuming consistent material properties

for all elements, the stiffness and strength are related based on the geometric properties only. In a structural
system, two elements in any one principal direction are sufficient to define the centre of rigidity CR and the
centre of strength CV, leading to the lateral load resisting element arrangement of elements 1 and 2 shown in the
simple one storey structure in Figure 1.

By varying the element dimensions alone, different locations of CV can exist for the same location of CR. For
example, with the above mentioned proportionalities in stiffness and strength, CV coincides with CR for any
ratio 21 / bb , assuming 0.1// 1221 == LLhh . This relationship is referred to as stiffness-to-strength

distribution A. On the other hand, CV will not coincide with CR for any ratio 12 / LL  where

0.1// 2121 == bbhh  except for 0.1/ 12 =LL  and is referred to as strength distribution B. Also, CV will not

coincide with CR for any ratio of 21 / hh  where 0.1// 1221 == LLbb  except for 0.1/ 21 =hh  and is referred to

as strength distribution C. Hence, each location of CR has a unique location of CV depending on the stiffness-to-
strength relationship used. Given the location of CM, the stiffness eccentricity Re  and strength eccentricity Ve

can be calculated. Figure 2 illustrates the resulting relationship between Re  and Ve  for the above examples of

stiffness-to-strength distributions for two locations of CM. In these examples, the ratio of only one of the
dimensions was varied from 0 to 1.0, while the other ratios remained unity. A positive value of stiffness or
strength eccentricity implies that CR or CV respectively is located in the positive x direction from CM, i.e.
between CM and element 2. In reality buildings are likely to have more complex relationships.
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Figure 1: Model layout in plan view Figure 2: Stiffness-to-strength relationships

STRUCTURAL MODEL
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The structural model used for the analysis consisted of a rigid rectangular diaphragm connected to the lateral
load resisting elements. Since the system response is not sensitive to the number of lateral elements along the
direction of ground motion [Goel & Chopra 1990], two lateral load resisting elements were used in each of the
two principal directions. They were symmetrically placed about the reference coordinate axis at a distance D and
λ D as shown in Figure  1, where λ  represented the ratio of the spacing between the elements in the two
principal directions. Three element arrangements were considered, λ = 0, 0.5 and 1.0. The elements were
idealised to have a bilinear force deformation relationship with 3% post yield stiffness. The out-of-plane stiffness
and strength of each element was assumed to be negligible. Hence, elements 1 and 2 provided lateral stiffness
and strength in the y-direction and elements 3 and 4 in the x-direction only.

The total system mass M was assumed to be concentrated at CM. In general, dead and live load distributions
often result in asymmetric CM locations with respect to the lateral resisting elements. Hence, the position of CM
was defined with respect to the coordinate axis by the distance CMx . Due to the complexity and the number of

parameters already considered, the mass was placed symmetrically between the elements in the y-direction. Two
positions of CM were investigated in this study, 0/ =DxCM  and 0.2.

The two stiffness-to-strength relationships identified as A and B in Figure 2 were considered. For strength
distribution A, the location of CR coincided with CV in all cases. For distribution B and 0/ =DxCM , CV was

significantly closer to CM than CR. A number of relationships between Re  and Ve  of note exist for

2.0/ =DxCM  and strength distribution B. An elastically balanced system, i.e. where 0/ =DeR , can have an

irregularity in the inelastic range, namely a significant strength eccentricity. On the other hand, systems with no
strength irregularity, i.e. where 0/ =DeV , can have significant stiffness eccentricity. Eccentricity values

between these two latter cases result in stiffness and strength eccentricities of opposite sign. Hence, although CR
is located between CM and element 2, CV is between CM and element 1. Lastly for 2.0/ =DxCM  and strength

distribution B, negative stiffness eccentricities are associated with larger values of negative strength eccentricity,
i.e., VR ee < .

Element Stiffness

The natural period of vibration of systems where CM coincided with CR resulted in modes of vibration that are
purely translational or purely rotational. These periods are referred to as nominal periods of vibration nXT , nYT

and θT  for the x direction, y direction and rotational elastic modes of vibration respectively. In this study, the

nominal translational period of vibration was assumed identical in both principal directions, i.e. nYnXn TTT == .

A wide spectrum of nominal lateral periods was considered, =nT 0.2, 0.4, 0.8, 1.4 and 2.0 seconds. The system

elastic lateral stiffness K was then computed using the predetermined nominal lateral period of vibration and
mass of the system. The total stiffness was redistributed between elements 1 and 2 to achieve the desired
stiffness eccentricity Re  in the y-direction while being evenly distributed between elements 3 and 4 in the x-

direction. As a result, the system was asymmetric in only one direction.

A recent study by Humar & Kumar [1998] emphasised that the ratio of translational to rotational period of

vibration calculated as )/(/ 2rKKTTn ⋅==Ω θθ  is the most important parameter governing the torsional

response, where θK  is the torsional stiffness of the lateral elements about CR and r  is the radius of gyration

about CM of the system. Numerically convenient, varying the radius of gyration can represent structures of
different plan geometry or mass distribution. The rotational period was therefore varied by increasing and

decreasing r  to achieve three values of 2/1=Ω , 1.0 and 2 , corresponding to systems ranging from
nominally torsionally dominant to nominally translationally dominant.

Ground motion and Element Strength

Ground motions obtained during the 1971 San Fernando earthquake as recorded at 234 Figueroa Street in Los
Angeles, California, were used for the non-linear time history dynamic analysis. Two horizontal components,
N37E and S53E, were applied in the analyses for the y-direction and x-direction ground acceleration input
respectively. This set of acceleration values was chosen based on similarities of its elastic response spectrum to
the Newmark and Hall design spectrum [Newmark & Hall 1982], which is often used as basis in modern
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building codes. The peak ground accelerations recorded 41 km from the epicentre on stiff soil is nearly identical
in magnitude for the two components, approximately 0.2g. Furthermore, this earthquake record has been used as
one of a number of records in previous studies on torsional response of asymmetric structures [Humar & Kumar
1998, Tso & Zhu 1994, Wong & Tso 1992].

For the purpose of investigating inelastically responding structural systems of varying degrees of inelasticity, the
design ductility dµ  was varied as =dµ 2, 4 and 6. Considering that only one earthquake record was used and in

an effort to reduce the uncertainty in the correlation between any single design spectrum and the earthquake
ground input, the ductility response spectra of the earthquake itself were used for the design of the system
considered. These ductility spectra, as plotted in Figure 3, were obtained from an inelastic single degree of
freedom SDF response with 5% damping and 3% strain hardening. Based on the design ductility and nominal
period of vibration, the spectral acceleration aS  and consequently the base shear capacity bV  were determined

for each principal direction as MSV ab ⋅= . The base shear was then numerically distributed to the lateral load

resisting elements based on the element stiffness to reflect the two different stiffness-to-strength relationships A
and B shown in Figure 2. A range of stiffness eccentricities 2.0/2.0 ≤≤− DeR  and their corresponding strength

eccentricities were considered. This resulted in a comparison of structural systems that are elastically identical
but with different strength distributions, i.e. different locations of CV.
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                    Figure 3: Earthquake response spectra in y-direction (N37E) and x-direction (S53E)

Since the objective of this study was to identify the influence of strength characteristics and not conformance to
design code procedures, no additional or accidental eccentricity was incorporated in establishing the design
strengths of the lateral load resisting elements.

SEISMIC RESPONSE

Time history non-linear dynamic analysis was used to calculate the response to the bi-directional earthquake
ground acceleration. The maximum displacement max∆  of each element and the maximum rotation θ  of the

diaphragm were recorded. The ductility demand µ  was calculated for each element by comparing the maximum

displacement to the yield displacement y∆  as y∆∆= /maxµ . Although only one earthquake record was used, a

number of distinctive behaviours and relevant trends were observed [Dusicka 2000]. Examples of the responses
are shown for illustration and trends observed in the response of systems of other system parameters reported.

To quantify the torsional response, the element displacement as well as ductility demands were normalised as a
percentage of the response of a SDF system, which had the same total base shear capacity bV  and total stiffness

K. This was achieved by comparing the element demand to the SDF displacement SDF∆  or ductility demand

SDFµ  as appropriate. In effect, the response of a SDF system represents the response of a one storey structure

where CM coincides with CR as well as CV and therefore responds only in translation. The difference between
the observed demands and SDF demands represent an increase or decrease as compared to the response in simple
translation.
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Response of Different Stiffness to Strength Distributions

Examples of displacement and ductility demands are shown in Figure 4 for the two locations of CM.  For
strength distribution B, 0/ =DxCM , the displacement demand on  the element which recorded an increase in

demand was less than on strength distribution A for all values of the eccentricity.  This result is further
emphasised when looking at the ductility demands.  This difference from displacement to ductility response is
due to the different yield displacements of the elements of same elastic properties, as a consequence of different
stiffness-to-strength relationships.  For both locations of CM the plots for the displacement and ductility
demands are identical for strength distribution A because the element strength is directly proportional to its
stiffness. However, for strength distribution B, the ductility response is different from the displacement response
as it has a different stffness-to-strength relationship.  In the case of 0/ =DxCM  and positive values of Re ,

element 2 is the stiffer as well as the stronger element and has a smaller yield displacement than element 1, i.e.

12 yy ∆<∆ . Despite a decrease in displacement demand in element 2 as compared to the SDF system, an increase

in ductility demand was calculated. Conversely, a large increase in displacement demand on element 1 as
compared to the SDF system resulted in a smaller increase in ductility demand. Interestingly, if the response was
forced to have no rotation at all and element 1 reached ductility 1µ , then element 2 would reach ductility

2112 / yy ∆∆⋅= µµ , i.e. larger ductility demand than element 1 despite a simply translational response.
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Figure 4: Normalised displacement and ductility demands for 8.0=nT  sec, 2/1=Ω , 5.0=λ  and

6=dµ

From the general trends obtained from additional analyses, which are not included here due to space limitations,
an increase in stiffness or strength eccentricity resulted in an increase in displacement and ductility demand on
one or both of the elements. For the case of 0/ =DxCM , the demands of elements 1 and 2 are mirror images

about the y-axis due to symmetry in both stiffness and strength distributions. For these systems, the ductility
demands of strength distribution B were usually closer to the SDF response than systems of strength distribution
A.  For the case of 2.0/ =DxCM , symmetry in response about the y-axis was not observed.  The approximately

constant nature of ductility demand on strength distribution B of systems where 2.0/ =DxCM , was observed for

other values of nT , Ω , λ  and dµ , although not always to the same degree of consistency. This indicates that an

optimal value of stiffness and strength eccentricity may exist, whereby the ductility demand on the elements is
less affected by the stiffness irregularity in the system.
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For a direct comparison between the two stiffness-to-strength distributions, the difference between the ultimate
demands for strength distribution A and B on each of the elements was calculated. Figure 5 illustrates this
demand difference of the system considered in Figure 4. In addition this figure also includes responses of
elastically identical systems but of different design ductility considerations, i.e. varying dµ . It is evident that a

significant difference exists between elastically identical systems but of different strength distributions or
different design base shear capacities. For the relatively small irregularities, the difference in response between
the two strength distributions can easily reach 50% of the demand on the SDF system.
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Figure 5: Normalised demand difference between distribution A and B

for 8.0=nT  sec, 2/1=Ω  and 5.0=λ

For all of the values shown in Figure 5 as well as all the other systems considered, both element displacement as
well as ductility difference was higher for the stiffer and stronger of the two elements in any one system. That is
element 1 for the negative values of Re and 0/ =DxCM  and element 2 for all of the other remaining systems.

Furthermore, when considering ductility demand alone, the stiffer and stronger element was observed to
generally have positive difference in demand. This indicates a higher ductility demand on the strong element for
the stiffness-to-strength distribution B than A. The opposite was observed for the more flexible and weaker
element.

The source of the torsional response originates from the irregularity between elements 1 and 2. Due to the
resulting rotations of the rigid diaphragm the demand on elements 3 and 4 are also affected. The degree of
increase is under investigation, but the increase in the demand becomes more significant with 0.1=λ , most
likely due to geometry considerations.

Influence of Design Ductility

For some systems in Figure 5, the difference in response is greater for lower values of design ductility. Although
not a consistent trend, it does illustrate that a significant difference due to inelastic response was also observed
for systems of high strength and therefore limited ductility response. The observed demands for these low design
ductility capacity systems was observed to have more scatter in the response as a function of the increasing
stiffness eccentricity than higher ductility values. The interaction of elastic and inelastic contributions to the
overall torsional response can be one of the causes. Nonetheless, one can expect the difference in the response
from one strength distribution to another to diminish as the systems approach purely elastic behaviour. This
transition is expected to occur at much smaller design ductility values than considered here, i.e. 2<<dµ .

Systems with design ductility much greater than 6 are expected to have low contribution to the torsional response
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from stiffness eccentricity as the response would be mostly inelastic. However, the higher values of design
ductilities used in this study, i.e. 6=dµ , which reflect some of the maximum values used in current building

codes, were also found to have a significant contribution due to elastic stiffness eccentricity.

Stiffness and Strength Eccentricity Contributions

While responding elastically, systems with no stiffness eccentricity 0=Re , respond in pure translation. In the

inelastic response however, rotation of the diaphragm does occur in these systems when the elements yield at
different displacements, i.e. when 0=Re  but 0≠Ve . This was observed for the case where 2.0/ =DxCM  and

element stiffness-to-strength relationship B. The resulting strength eccentricity 13.0/ −=DeV  introduced

irregularity in the inelastic range and therefore resulted in a combination of translational and rotational response
once the elements yielded. It is the difference in the location of the force resultant with respect to CM in the
inelastic range, as stressed by Paulay [1997, 1998 a,b,c], which causes the rotation of the diaphragm. The
resulting combination of translation and rotation in the response induced additional demands on the elements and
reduced the demand on others.

Figure 6 illustrates the displacement and ductility demands on elements 1 and 2 caused by the strength
eccentricity alone for a range of nominal natural periods of vibration and ratios of nominal translational to
rotational periods. The stiffer and stronger element, i.e. element 2 for 2.0/ =DxCM , was found to generally

have a larger displacement demand while the less stiff and weaker element had a smaller demand as compared to
the response of a SDF system. The increase in displacement is highlighted by the associated ductility demand
increase, which in the example shown can be more than 40% of the SDF response.
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A structural system where 2.0/ =DxCM , 2.0/ =DeR  and element stiffness to strength relationship B has

a very small strength eccentricity, 02.0/ −=DeV . Due to the insignificant strength eccentricity, no additional

rotations were introduced while both elements have yielded. Nonetheless, this structural system had a rotational
component in the response from the start of the ground motion and due to rotational momentum, the motion
continued into the inelastic range. The maximum demands occurred in the inelastic part of the response, but it is
clear that the strength eccentricity alone is not the sole contributor to the torsional response in ductile structures.

CONCLUSIONS

Two variations of element stiffness-to-strength relationships were analysed in single storey systems using time
history dynamic analysis for one set of bi-directional earthquake ground motions. A wide range of torsionally
susceptible systems were considered and a significant difference in response for the two strength distributions
was observed. In the two cases considered, stiffness distribution B was found to have a larger response
difference as compared to A for the stiffer and stronger element. Systems that are perfectly balanced elastically
can still have a significant torsional response due to strength irregularities. Yet, strength eccentricity alone was
not the sole contributor to the torsional response because systems that have no strength eccentricity but do have
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stiffness eccentricity also showed significant torsional response. It was found that both the stiffness as well as the
strength eccentricities contribute to the torsional response of ductile structures. These conclusions are not limited
to systems designed to specific level of design ductility for the range considered. Therefore, in order to
investigate the torsional response of ductile structural systems, both stiffness and strength irregularities should be
considered and consequently previous studies on inelastic torsional response may have to be revisited.
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