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SYNOPSIS

A stationary, Gaussian, random process, h&v%ng a prescribed n9n—
uniform power spectral density function and gons%sting of 50 artificial
earthquake accelerograms of short duration with 1nte?sity levels equiva-
lent to the 1940 El Centro, California, earthquake, is generated on a
digital computer. The response of numerous structural systems having
various internal energy dissipation capabilities as characterized by
nonlinear stiffness degrading and elasto-plastic models are determined
for this process, and the extreme values of response are plotted in the
form of probability distribution functions.

INTRODUCTION

For many years structural engineers have been concerned with the
dynamic response of structural systems when subjected to strong motion
earthquakes, and a great deal of insight into their behavior under these
conditions has been obtained by theoretical studies based on determinis-
tic methods. These methods have serious limitations, however, due to the
fact that past recorded strong motion accelerograms, which are very lim-
ited in number, have been used to prescribe the ground motion inputs.
Since seismic waves are usually initiated by irregular slippage along
faults followed by numerous random reflections, refractions, and attenua-
tions within the complex ground formations through which they pass, sto-
chastic (or random) process representations of ground motion inputs should
be more appropriate. The advantage of this type of representation is
that the dynamic response of structural systems can be established in a

probabilistic sense, thus providing a more rational basis for seismic
resistant designs.

Unfortunately, due tc the limited number of available strong motion
accelerograms, it is extremely difficult to establish reliable stochastic
models for ground motion by statistical means. For this reason, investi-
gators have been forced to hypothesize stochastic models which are
believed to possess the pertinent characteristics of real earthquakes and
which can be correlated with existing strong motion data. Both stationary
and non-stationary processes have been used for this purpose.(1-11)

To satisfy the requirements of the structural engineer, stochastic
models of ground motion must properly reflect the damage potential of
future earthquakes to a wide range of structural types. Valuable informa-
tion regarding the performance of these structural types can be obtained
directly from studies on the response characteristics of certain nonlinear
single degree of freedom systems provided they possess appropriate dynamic
properties. Therefore, the research investigation reported herein was
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conducted with the following objectives in mind: (1) to develop a digital
computer program for the generation of stochastic processes which possess
the pertinent properties of strong ground motion as caused by earthquakes,
(2) to establish the probabilistic maximum response of certain nonlinear
single degree of freedom systems, including the ordinary elasto-plastic
and stiffness degrading models to such processes, and (3) to compare and
correlate the response of these nonlinear systems with their corresponding
linear elastic systems, i.e., systems having the same corresponding ini-
tial stiffnesses and viscous damping ratios.

The stiffness degfadtng model referred to here was, originally estab-

lished byAR. W. Clough 12) to represent the characterlftlc behavior of
concrete frames as reported by N. Hansen and H. Conner

STOCHASTIC MODEL OF GROUND MOTION

A. Type of Stochastic Model - Upon visual inspection of existing strong
motion accelerograms, one is likely to conclude that any stochastic pro-
cess representation of ground motion must be non-stationary. In the
rigorous sense, this conclusion would be true; however, after careful con-
sideration of (1) the lack of strong motion data for statistical studies,
(2) the difficulties of establishing valid non-stationary characteristics,
. and (3) the ultimate objectives in choosing a model, this conclusion .
becomes debatable.

Most strong motion accelerograms recorded on firm alluvial soil con-
tain a short phase (5-15 seconds) of relatively-stationary high-intensity
oscillation having predominate frequencies in the range 2-5 cycles per
second. Using these accelerograms as the prescribed excitation for struc-
fﬁral'systems deterministic studies show that most of these systems
experj eﬂge their peak relative displacement response during this short
phase Therefore, if peak relative response is being used to estab-
lish the degree of damage incurred, it seems reasonable to model only this
short phase of the accelerograms using stationary processes of short dura-
tion.

Further, in support of this point of view, consider the non-
stationary response of linear structural systems to stationary 'white
noise" excitation when "at rest" initial conditions are imposed. A non-
deterministic solution of this problem shows that the ensemble mean square
response of a typically damped system (5-10 percent of critical) approach-
es its stationary value in a very short period of time, i.e., within an
interval corresponding to only a few periods of the fundamental mode of
vibration(15), Therefore, a stationary process of, say, 10 seconds dura-
tion for the excitation gives ample time for most linear buildings which
have fundamental periods in the range 0-2 seconds to approach their steady
state conditions. Thus, increasing the duration of excitation beyond this
10 second value has a relatively small effect on the probablllty distribu-
tion of peak response.

In view of this discussion, it seems reasonable to represent strong

ground motion by short duration stationary processes when investigating
the peak response of damped linear structures having fundamental periods
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below approximately 2 seconds, and it is believed reasonable to also use
this representation when investigating the peak response of certain elasto-
plastic systems, provided there is no loss of strength associated with the
inelastic deformations produced. In the latter case, stationary response
levels are reached more slowly, therefore making it more important to
select a realistic duration for the stationary process.

Due to the large number of random factors which influence the char-
acteristics of strong motion accelerograms, one would expect, and indeed
finds, that these wave forms are nearly Gaussian below the 30 level
(0 = standard deviation). Thus, a Gaussian distribution has been speci-
fied for the short duration stationary process used in this investigation.

B. Power Spectral Density Function - The power spectral density function
for any stationary process which characterizes strong ground motion must,
of course, reflect the correct frequency components within the real ground
motion at any geographic location represented by the process. Since the
local soil conditions greatly influence the characteristics of strong
ground motion, the power spectral density function must be adjusted so as
to be consistent with the soil conditions present.

To establish the form of the power spectral demsity function, one
must rely upon time series analyses of existing strong motion records.
Such analyses can be carried out by first evaluating the time average

T
¢, (1) = = /% a(t) a(t + 1) at (1)
o 0
where a(t) is the recorded ground acceleration, T is a dummy time variable,
and T is the duration of the record being analyzed, and then by taking
the FSurier transform of @a(r) using the relation

T
0(0) = 35 17 4,(1) e ar (2)

i}

where w is a circular frequency and To is a prescribed limit of integra-
tion based on convergence considerations. If the wave form being analyzed
is stationary over an infinite duration, the functions ¢,(t) and 8,4(w)
approach the autocorrelation function R (T) and power spectral density
function Sa(w) respectively, with 1ncrea31ng values of T, and T . For-
tunately, convergence to the true functions takes place quite ragidly.

Appreciable variations are found in the functions ¢,(t) and 8,(w) for
strong motion accelerograms even when representing similar soil conditions
Their general forms, however, have characteristics similar to those shown
in Figs. 1b and lec which vere derived from the accelerogram (N-S
component, El Centro, California, 1940) shown in Fig. la. It is of par-
ticular interest to note that the ordinates of the function 6,(w) usually
increase with increasing frequencies to a maximum value at aome frequency
vwhich may be considered a characteristic ground frequency and then
decreases rather rapidly towards zero in an asymptotic manner. This gen—

eral rise and fall of the function is, however, accompanied by local
random fluctuations.

Due to lack of statistical information, it is impossible to rigor-
jously establish the form of power spectral density function Sq, (w) to be
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used in the generation of short duration stationary processes which
represent strong ground motions; however, if the intended use of these
processes is primarily for investigating the general probabilistic fea-
tures of peak structural response, it is believed that an averaged smooth
version of functions 6,(w) can be used for this purpose with reasonable
success.

Extensive time series analyses of strong motion records have been
conducted by K. Kgnai and H. Tajimi which yielded results similar to those
described a.‘bove(l A7) These investigators have suggested a power spec-
tral density function of the formso 14 ME; (59)

S (w) = 772 £ 2 2
a W 2, W (3)
- (= + 1 —
1 - () *ég(w)
g g
vhere S 1is'a constant power spectral density, Wy is a characteristic
ground frequency, and £, is a characteristic damping ratio. Because of
its simplicity and relative accuracy, the authors, as well as ﬁgher inves-
tigators, have adopted this function for their inveﬁtigations( .

The fact that the function given by Eq. (3) does not reflect the
local random fluctuations normally present in the function 84(w) merits
some consideration, particularly if one 1s concerned with the peak
response of narrow band systems to the prescribed random excitation. Due
to the shortness in duration of real accelerograms, it is believed that
such fluctuations will be generated by a time series analysis whether they
are actually present or not. Therefore, any attempt to model such fluc~
tuations does not appear justified at the present time.

It should be recognized that Eg. (3) represents the transfer fﬁnction
for a simple single degree of freedom system having a natural freguency Wy
and a viscous damping ratio Eg. In this case So represents a constant
power spectral density function for acceleration at the support and Sa(w)
represents the power spectral density function for absolute or total accel-
eration of the system's lumped mass. Thus, for the case of surface ground
acceleration, as represented by Sa(w)’ So can be considered as a constant
power spectral density -function for acceleration at bedrock level, in
which case the single degree of freedom transfer function represents the
characteristics of the overlaying soil. Kanai has suggested
15.6 rads./sec. for w, and 0.6 for Eg,as being representative of firm soil
conditions. These numerical values were adopted by the authors in the
investigation reported herein.

The variance 0.2 (or mean square value) of process a(t), as charac-
terized by Eq. (3), is given by the relation(©),

2 1 '
= =) +2 W
% 28 ) Es ™ 5o (k)
C. Generation of Stochasti Mgdel - e procedure used to generate a

Gaussian stationary process having a power spectral density function corre-
sponding to Eq. (3) will now be described.

This proce&ure starts by sampling a sequence of pairs of statistically
independent random numbers x,,X,;X,,X; ; ——=-— X _yeX s all of which have a
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uniform probebility distribution over the range o < x < 1. A new
sequence of pairs of statistically independent random numbers Ys¥os
y3,yh; —-— 3 yn l’yn are then generated using the relations

1
r
Y, = (-2 log, xi) cos 21cx1+l

(5)

1
- (L r
Y = (-2 log, xi) sin 21rxi+l

which have been shown to posses? g ggsssian distribution with a mean
of zero and a variance of unity 10- .

A single wave form y(t) can now be established by assigning the
values yqi,¥,y~—=¥p ton successive ordinates spaced at equal intervals
Ae along a %ime abscissa and by assuming a linear variation of ordinates
over each interval. Assume that the initial ordinate Yor which is taken
equal to zero, is located at t = t_ where t is & random variable having
& uniform probability density function of igtensity 1/A€e over the inter-
val o < to < Ae.

A complete ensemble of m such wave forms yp(t) (r = 1,2,~--,m) can
be obtained by repeating this procedure m times, thereby creating an
ergodic process which is completely characterized by the symmetric auto-

correlation function 2 3
2_ .1l
l3'(Ae)' Ae:) -Ae < T < Ae
el Lot Qe -2me <t s -Ae
R ={3-2G) + (57 -3 Ge?) heZrcane (O
0 T £ ~2Ae; T > 2A€

Suppose that the intensity of this process is now changed by multiplying
each ordinate y; in the process by the normalization factor v2mS /Ae,
where S, is a constant, The autocorrelation function for the new process
is obtagned by simply multiplying the right hand side of Eq. (6) by
2rS,/A€, thus giving QWSO

2 _ (1, . Ly’
AE [3 - (AE) ,+ §' (AE ) ”AESTF_AE

: 2mS :
I Qi T P | RN SR NP 4 S -V P X PRV
R}’(T) Ae [3 2(Ae: )+ (Ae - % (Ae )] Ae < T< 28€ (1)

o “ T < -2he; T > 2Ae
It is significant to note that as Aec is allowed to approach zero, the
autocorrelation function given by Eq. (7) approaches the relation
Ry('r) = 2ms_§(1) (8)

where &(T) is a Dirac delta function located at the origin T = Q. There-
fore, in the limit this process becomes Gaussian "white noise" having a
uniform power spectral density function of intensity § over the complete
range of frequencies, i.e., over the range - ® < @ < o

For practical reasons A€ must be taken as a finite quantity, but suf-
ficiently small so that the resulting power spectral density function is
nearly constant at intensity SO over the lower range of frequencies (0-10
cps) which must be properly represented in the process. A value of 0.025
seconds was chosen for Ae in this investigation. ‘
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To establish the desired stationary process a(t), each member y.(t)

(r = 1,2,-——,m) of the normalized process y(t) must be filtered in accord-
ance with Eq. (3). This step can be accomplished by assuming that a sim-
ple single degree of freedom system having an undamped circular frequency
w, and a damping ratio &, is subjected separately to the m support accele-
ration functions y,.(t) and by calculating the corresponding absolute or
total acceleration functions a,.(t) of the mass. Mathematically, this
statement is equivalent to saying that one must solve the differential
equations

. . 2

zr(t) + 2wg£gzr(t) + ggzr(t) = —yr(t) r=1,2, ---, m (g)
using appropriate random initial conditions to insure that z(t) is sta-
tionary and then evaluate the desired family of acceleration functions
ar(t) using the relation

ar(t) = ir(t) + yr(t) r=1,2, ---, m (10)

In this investigation, Egs.' (9) were solved numerically on a digital com-
puter using a constant integration interval of 0.0l seconds and a
procedure corresponding to the standard linear acceleration method(21),

D. Discussion of Standard Stochastic Model -~ A total of fifty artificial
accelerograms (m = 50) were generated for process a(t) with a duration of
30 seconds which corresponds to Ae = 0,025 seconds and n = 1200. The
standard intensity S, of the unfiltered "white noise" was set at 0.0061k
ft.2/sec.3 so that the mean velocity response spectrum curves for the fil-
tered process a(t) would give a "best fit" with the standard response
spectrum curves published by G. Housner(22), This intensity is slightly
less than the value of 0.0063 ft.z/sec.3 used by J. Penzien in a previous
investigation to correlate the mean velocity g?sponse spectrum curves for
"white noise" with Housner's standard curves(©),

The first two of fifty artificial accelerograms generated are shown
in Figs. 2a and 2b. It is interesting to note that these accelerograms
are very similar in appearance to the two real accelerograms presented in
Figs. 2c and 2d except for the general stationary appearance of the arti-
ficial accelerograms.

The autocorrelation and corresponding power spectral density func-
tions (as approximated by ¢,(T) and 6,(w), respectively) for the first two
artificial earthquakes generated are shown in Figs. 3a-3d. It is of parﬁ‘
ticular significance to note that while the power spectral density func-
tions show noticeable variations -from one to another, their average for
ten artificial earthquakes as shown in Fig. 3f is quite close to the pre-
scribed function (Eq. 3). |

Since the local random type fluctuations appearing in the individual
power spectral density functions are nearly eliminated by this averaging
procedure, it would appear that a duration of 30 seconds is insufficient to
allow full convergence to the true function during a time series analysis;
thus, the appearance of similar fluctuations in the function 8,(w) (Eq. 2)
for real earthquakes are most likely the result of similar duration
effects. Therefore, it does not seem reasonable at this time to attempt
the inclusion of these variations in a stochastic model representing
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strong motion accelerogreanms.

The total area (variance of the process 0&2} upder the averaged power
spectral density function in Fig. 3f is somevhat less t%an the &rea"under
the prescribed function due to the manner in which the "white nwiée pro-
cess y(t) was digitized in preparation for the numerical integration of
Egs. (9). Process y(t) was originally created by spac%ng the rund?m ordi-
nates y; at 0.025 second intervals and by assuming a linear variation over
each intervel. However, since the numerical integration used a 0.010 sec-
ond interval, it was necessary to digitize the process y(t) accordingly.
Thus, small portions of the wave forms y. (t) were cut off at every other
point of slope change in the function. these glight changes In the wave
forms somewhat reduce the variance of this particular process and thus
have & similar effect on process a(t).

This same area discrepancy was also observed when the average mean
square value, 0,2, of the digitized ordinates (at 0.01 second intervals)
of process a(t) was found equal to 0.54 ft.2/sec.%, which is somewhat
below the theoretical value of 0.61 as given by Eq. (k).

Ground acceleration processes having durations shorter than 30 sec-
onds were also established for purposes of studying the influence of
duration on structural response. These processes were formed by simply
taking specified portions of the 30 second duration process.

The numerical values of 15.6 rads/sec for w, and 0.6 for £, a3
selected for this investigetion represent firm ground conditions, If
different ground conditions are to be represented by the stochastic
process a(t), these parameters should be adjusted to reflect the proper
frequency distribution.

RESPONSE OF LINEAR SINGLE DEGREE OF FREEDOM SYSTEMS

Complete time histories of response of viscously damped linear sin-
gle degree of freedom systems when subjected separately to support accel-
erations a.(t) (r-1,2,---,50) were established by deterministic methods,
i.e., by standard numerical integration procedures. The peak or extreme
value of response was noted in each case, thus providing ordinates for
standard velocity response spectrum curves as shown in Figs. ba and bb for
the first 2 members of ensemble a(t), respectively, for 4 different values
of the damping ratio §. Significant variations in these curves are noted
from one ensemble member to another, especially for the lower values of
damping. These variations can be expected, however, due to the random
vhase relations present in process a(t).

To obfain a set of velocity response spectrum curves for the entire
process a(t), the response spectrum curves for all 50 members of the
ensemble vere averaged to give the results shown in Fig. be, This averag-
ing procedure greatly reduces the local fluctuations which appear in the
spectrum curves for individual members of the input process. The larger
the number of curves averaged, the greater the "smoothing" effect.

As previously pointed out, the intensity 8  of the unfiltered "white
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noise" was set at 0.0061k ft2/sec> so that the mean velocity response
gpectrum curves (Fig. 4c) for higher damping ratios would give a "best
£it" with Housner's standard spectrum curves (Fig. kd).

It is important to realize that the averaged response spectrum curves
represent statistical means and that a variance of peak response exists
about each mean value. To show the degree of variance expected, probg-
bility distribution functions for the extreme values of relative displace-
ment response will be presented subsequently for four different single
degree of freedom systems representing a short and a long period struc-
ture, each of which has been assigned a low and & high damping ratio.

RESPONSE OF NONLINEAR SINGLE DEGREE OF FREEDOM SYSTEMS

Complete time histories of relative displacement response x(t) of
the ordinary elasto-plastic and.the stiffness degrading models were est-
ablished by standard numerical integration procedures when subjected sep-
arately to support accelerations a(t) corresponding to the recorded N-8
component of acceleration of the 1940 El Centro, California, earthquake
and to the fifty artificially generated ground accelerations a_(t) pre~
viously described, but normalized by a factor of 2.902 so thatrthey would
correspond to the intensity level of the N-S component of the 1940 E1
Centro earthquake (S_ = 2.902 x 0.0061k = 0.0515 rt2/sec3) . (4

The basic parameters of the nonlinear models, which are also common
to the linear models, are shown in Fig. 5. In all cases T and £ repre-
sent the period of vibration and the viscous demping ratio, respectively,
in the initial elastic range. The statie force-deflection relations for
the elasto-plastic and stiffness degrading models are shown in Figs. 5b
and 5c, respectively. The strength ratio B and ductility factor DF are
defined for these models in accordance with the relations B = ¥,/W and
DF = |x(t)| _/x,. It is significant to.note that in addition to loss
of stiffnes$ Fol owing any yielding, the stiffness degrading model per-
mits hysteresis loops to be formed even at very low amplitudes of oscil-
lation. Therefore, this model dissipates more energy in the low
amplitude ranges of response than does the equivalent elasto~plastic
model. ‘

In this investigation, the response of the elasto-plastic and stiff-
ness degrading models were studied for two different periods, T = 0.3 and
2.7 seconds, and for two different damping ratios, & = 0.02 and 0.10;
thus, a total of 8 different nonlinear models were considered. Strength
ratios B were selected for these models on the basis that the yield re-
sistance V, would equal twice the design load as specified in Section
2313(4d) ofythe 1967 Uniform Buildin§ Code(23) for moment resisting frames,
i.e., B = 2KC = (2)(0.67)(0.05)(T)-1/3,

Extreme values of relative displacement response Ix(t)lmax vere
determined for each of the 8 nonlinear models defined above when excited
separatelg by the 50 members of process a(t) (corresponding to S_=
0.0515 ft2/sec3). These values are presented in the form of proBability
distribution functions in the next section of this paper.
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Probability distribution functions @([xl ax) for the extreme values
of relative displacement response as defined Ey the relation

i} o(x) = prlfx|_ <X (11)

are presented in the form of Gumbel plots in Fig. 6 for the 8 non-linear
models previously described when excited separately by each member of
process a(t) (S = 0.0515 ft2/sec3). For comparison purposes, probabil-
ity distribution functions are also presented for the L corresponding
linear elastic models, i.e., models having the same corresponding initial
stiffnesses and viscous demping ratios. These models are identified by
the arabic numerals 1-12 in Fig. 6 and have the properties listed in
Table I.

Two probability distribution functions are shown in Fig. 6 for each
of the 12 structural models, namely a wavy line function which is a plot
of the actual extreme values determined for process x(t) and a straight
line function which is & theoretical distribution of the form (2Lk,25)

@([x(max) = exp(-e (12)

where y is a reduced extreme value defined by the relation
y = a(lx]__ - (13)

Constants o and u appearing in Eq. (13) can be determined using the
relations!\?

1/a = Gx/oy s u=x - (y/a) (1k)

where 0_ and X represent the standard deviation and mean value, respec-
tively,xfor the 50 extreme values of x(t) and where 0, and y represent
the standard deviation and mean value, respectively *Tor the reduced
extrewe values y. The numerical values of ¢, and y depend upon the num-
ber of observed extreme values._ When this number equals 50, as in this
investigation, 0, = 1.1607 and ¥ = 0.5485.(2 The numerical values for
O0x and X and the corresponding values for 1/0 and u are given in Table I
for =ach of the 12 structural models studied.

The probability distribution scale on Gumbel extreme value charts

as shown in Fig. 6 varies in such e manner that Eq. (12) plots as a
straight line with its ordinate u at the origin (y = 0) representing the
most probable extreme value and with its slope being proportional to the
stendard deviation of the extreme values. Note that the extreme values
in Fig. 6 for the nonlinear models can be measured also in terms of the
duetility factor and that the probability distribution can be measured
in verms of the return period, i.e., the expected number of earthquakes
required to produce a single extreme value having the magnitude shown by
the ordinate scale. \

Tre significant features to be noted in Figs. 6a and 6b are the fol-
lowing: (1) The most probable extreme values of response for short period
structures as represented in Fig. 6a are much greater for the elasto-
plastic and stiffness degrading models than for their corresponding linear
models, are appreciably greater for the elasto-plastic models than for
their corresponding stil'fness degrading models, and are considerably
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greater for those models having 2 percent of critical damping than for
their corresponding models having 10 percent of critical damping. (2)
The most probable extreme values of response for long period structures
as represented in Fig. 6b are considerably greater for those models hav-
ing 2 percent of critical damping than for their corresponding models
having 10 percent of critical damping; however, these values differ very
little from one model to another. (3) The standard deviations of extreme
value response for the short period structures are considerably larger
for the elasto-plastic and stiffness degrading models than for their cor-
responding linear models and are appreciably larger for the elasto-
plastic models than for their corresponding stiffness degrading models.
(4) The standard deviations of extreme value response for long period
structures correlate in a manner quite similar to short period structures
except that the differences are not so great. (5) Increasing the viscous
damping ratio increases the standard deviations of extreme value response
for each model type. (6) The theoretical straight line functions as rep-
resented by Eq. (12) show very good correlations with the actual distri-
- butions.

EFFECT OF DURATION ON PEAK RESPONSE

The probability distribution functions for peak response in Fig. 6
result from an input process a(t) having a duration of 30 seconds. To
determine the influence of duration on peak response, a number of shorter
duration processes were also used in the general investigation reported
herein.

To illustrate these effects, a ratio of the ensemble average of
extreme value response for a variable duration T , E[xmax]’ To, to the
ensemble average of extreme value response for a fixed duration of 30
seconds, E[xma ], 30, is plotted in Fig. 7 as a function of the duration

. b'e
ratio TO/BO. :

It is quite evident, based on Curve No. 2 in Fig. Ta, that the mean
peak response of typically damped, linear, short period structures
(T = 0.3 seconds) increases very slowly with duration beyond approxi-
mately 6 seconds. Long period structures are, of course, more sensitive
to duration as shown by Curve No. 2 in Fig. Tb. This curve indicates
that the magnitude of mean peak response for a l5-second duration process
is approximately 95 percent of the magnitude observed for a 30-second
duration process. As shown in Figs. Ta and Tb, elasto-plastic and stiff-
ness degrading structures are much more sensitive to duration than are
elastic structures; thus, it is apparent that realistic durations must be
used for stationary inputs when investigating the response of nonlinear
structures. :

CONCLUDING REMARKS

As demonstrated in this paper, stationary processes of short dura-
tion can be used quite effectively to establish the probabilistic peak
response of both linear and nonlinear structural systems to strong motion
earthquakes of a given intensity level. In the future, however, when the
true dynamic characteristics of real structures become better known, dam-
age is 1likeély to be measured using various accumulative damasge criteria,
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in which case it will become more important that appropriate nonstation-
ary processes be developed for damage prediction studies.
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