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SYNOPSIS

Earthquake motion is simulatéd, by a nonstationary random process which
is represented as a product of a deterministic function of time and a station-
ary random process with arbitrary power spectrum. The stiructure is replaced
by a single degree of freedom system and its response to statistical excita-
tion is treated as a problem of the threshold crossing. A response spectrum
which contains the probabilistic quantity as a parameter is presented for
evaluating the structural response under earthquake motion.

INTRODUCTION

There are two different approaches to the design of stiructures for seis-
mic loadings. The first one consists in the investigation of the response of
structures to earthquake records and the second is based on the probability
method. Although accelerograms of the El Centro, May 18, 1940, the Taft,
July 21, 1952 and so forth are frequently used as an input excitation to the
numerical computation of a structural response, the use of the record of the
ground movement of a certain earthquake is questionable for the analysis of
response of structures on the ground with different dynamic properties.
However, it seems reasonable that these strong motion accelerograms provide
a character as a standard which can be used as common data among studies on
structural response for the aseismic design of structures.

Since, on the other hand, the strong~motion earthquake records obtained
in the past are known to have statistical properties and the response of
structures to random excitations which are represented as the white noise
or the train of random pulses is close to the response to actual earthquake
records(1), the simulation of earthquakes by stochastic process has been
carried out in the investigations of structural response(2-8). However,
because the spectral composition of earthquake motion is influenced by the
dynamic properties of ground, the -simulation in which the frequency charac-
teristics of ground is taken into consideration would be desirable. Then
in this study the earthquake acceleration has been represented as a nonsta~
tionary random process which is described as a product of a nonstationary
deterministic function and a stationary random process which has an arbi-
trary power spectrum. By this representation, the frequency characteristics
of ground can be easily considered in the simulated earthquakes.

Usually the response spectrum is defined as the maximum value of res-
ponse of the system. Therefore the other information which the response of
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gtructures provides does not contribute to the response spéctrum and the
‘information which is obtained from the structural response to a specific -
input is limited because of the statistical nature of earthquake records.
The simulation of earthquake as a stochastic process enables us to introduce
the probabilistic quantity as a parameter in the response spectrum.

SIMULATION OF EARTHQUAKE MOTION

Since the ground motion during earthquakes is a nonstationary phenome-
non, the representation as a stochastic process is to be treated as a non-
stationary stochastic process of which probabilistic quantity governing the
spectral composition and duration time is dependent on time. However the
record of an actual earthquake is, unfortunately, merely a member function
from a point of view such that earthquake motion is a stochastic process.
Then the variation of probabilistic quantity with respect to time can not
be found out from an actual earthquake record. Because of these limitations,
much is yet to be studied concerning the nonstationarity of earthquake records
in connection with structural response.

In some references, the earthquake motion has been simulated by the non-
stationary random process which is represented as a product of a nonstation-
ary deterministic function of time and a stationary random process(5-8).
This method is followed in this study also and hence the ground acceleration
f(t) during earthquake is represented as a product of a deterministic func-
tion (t) and a stationary random process g(t) as follows;

£(t) = ¥(t)-&(t) (1)
where Y(t) is a slowly varying function relative to the fluctuation of g(t).
‘Herein the following representation of g(t) is used

N
1 .
— ¢ cos(p t+ ¢ ). (2)
in which 7n is a random variable with probabilistic density pg(7 ) and
is a random phase angle uniformly distributed in (0,27M) and N is a large
positive integer. By virtue of the central limit theorem it is evident that
the random process expressed in Eq.(2) is Gaussian. i

g(t) =

n

The autocorrelation function Rg(‘t) of g(t) is

R (T) = Eg(1) e(t+7)]
N
= > cos 7T (3)

2N n=1

For stationary random process the autocorrelation function constructs a pair
of Fourier transform with the power spectral density Sg(w). Therefore

N .
s,(0) = g 2, [Sw=2,) + 8w 1)

n=1
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where (1) is the Dirac's delta function. In this equation, 7, is a ran-
dom variable with density pg( q) which is valid for positive value of 7,
then it can be written as follows;

Sg(w) = npg(w) (5)

for large value of N. Since Eq.(5) indicates that the power spectrum of
stationary random process expressed by Eq.(2) is similar to the probability
density of variable 4, the stationary random process with arbitrary power
spectrum can be constructed by the harmonic function containing the proba-
bilistic variable 4 with density s( 4 )/m and the random phase angle.

On the other hand, the autocovariance of nonstationary random process
f(t) for large value of N can be expressed as follows;
Kol T,y Tp) = B[E(T,)-£(T,))
1 m
= YT IW(T,) jo pg( 1) cos 2(T4= Tdg (6)

Th?rifore the variance of f£(t) is equal to a half of the squered value of
Y(t). '

The spectrum of f£(t) will be distorted compared with that of g(t),
then the generalized spectral density $pr(w,, w,) can be introduced in
place of the Fourier transform of the autooorrela%ion function provided

that the nonstationary random process f(t) has the Pourier transform F(w).

Bop(wyrwy) = E[F( w,) F( “’2)] ‘E{F( “"1)]'3(”*( “’2)} (7)

* A
where F (w) is the complex conjugate of F(w). If the Fourier transform
F(w) exists P(w) may be readily obtained as follows;

F(w) = = [exp(ie) F(w=1) + exp(-i9) F(w+n)]  (8)
E[F(w)] - E[F*(w)] =0 (9)

then the generalized spectral density ¥ pe( Wy “’2) reduces to

Thus

+ ¥+ 2) F(w,ym-n) ] pg(1) dn (10)

Consequently, by use of the representations of Eqs.(1) and (2), the auto-
covariance function and spectral density of nonstationary random process
can be expressed by the deterministic function, the Fourier transform of it
and probability density governing the frequency characteriptics.

CENERATION OF ARTIFICIAL EARTHQUAKES

The stationary random process expressed in Eq.(2) has been generated
on a digital computer. Numerical computation is carried out by the Monte
Carlo method. A random number 4 with density pg()l) and ¢ with uniform
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distribution in (0,27 ) are computed from the pseudo-random numbers which
are generated successively on a digital computer from a pair of preceding
ones. :
A set of fifteen stationary random process g(t) were generated by this
method. In these computation N was fixed to 200 and time step was 0.02 sec.
From these sample functions the response spectra(7) were calculated indi-
vidually. The results were similar to the spectra of strong-motion earth-
quakes and it seems that the artificial earthquakes posess the known pro-
perties of actual earthquake records in spite of the different frequency
characteristics.

For'the purpose of generation of nonstationary random process, the
deterministic function ¥ (t) and the probability density pg(q ) are assumed
to be

() = alt/t,) exp(1-t/ty) U(t) (11)

p() = 2 7 exn(-2 1/ 1) /(M2 2) (12)

where tpy 75y U(t) and q are, respectively, the peak time of ¥ (t), the
peak frequency, unit step function and constant with the dimension of
acceleration. In Fig.2 are shown two sample records. In these figures,
the nondimensional time t_ = and nondimensional frequency 7p* are used, i.e.,
1, "= t/tp and / *a 7pt . Consequently, the value of 7p* represents the
ratio of the peak time to the period corresponding to the peak freguency.

From these generation of artificial earthquake records, either station-
ary or ncnstationary, it has been found that the rough estimation of the
maximum value of the generated records is given by 3«3g using the standard
deviation o, of the stationary random process g(t). In both examples shown
in Fig.2, since O, is Q/Vﬁ, the value of 3 0g is about 2@ which coincide
with the maximum value of f( 7, ¢;t).

R.M.3. DETECTION

Under the assumption that the ground acceleration f(t) is expressed as
a product of a deterministic function ¥(t) and a stationary random process
g(t) as Eq.(1), then +(t) is the envelope of earthquake records, which is
a slowly varying continuous function of time. If we have many actual earth-
quake records which belong to the same sample space, the envelope function
is given by the ensemble average of the squared value of these records.
However, since an actual earthquake record is merely a member function from
the view point of statistical method, an another method, alternative to the
ensemble average, is necessary for the evaluation of the envelope. Thus
the r.m.s. of a few earthquake records are calculated in place of envelope
by the moving average method. \

Let f; be the time series of the equi-spaced accelerograms, then the
r.m.s. f; is calculated by the following formula

2i-1

- 1 2\% .
fi=(m g; fs) for id<m



i4+m

T.= (--1-- Z: f 2)‘3 for M-mi1zm (13)
i T . B
m BS=l-M
3 %
- 1 2 .
CF . £
= (Soiyas 8_2%_’& fg) or iyK-m

where a4t is the time interval adjacent value of equi-spaced records, M is
number of data and Tp is the period of moving average, which 1s equal to 2mat.

Figs.3 and 4 show the results for the accelerograms of the Taft, Cali-
fornia, earthquake of July 21, 1952 and of the El Centro, California, earth-
queke of May 18, 1940, respectively. Although the curve for short period
,moving sverage is jagged, the bottom curves in both figures are fairly
smooth and very slowly varying with the fluctuation of accelerograms. After
observing these figures, it would seem that the suitable average period Ty

is approximately equal to the decuple of the predominant period of acceler-
ograms.

STRUCTURAL RESPONSE

Consider a viscously damped linear system with a single degree of free-
dom which is subjected to the ground acceleration f(t). If the system starts
from rest it is well known that the response x(t) is written as a convolution

integral of input acceleration and the unit impulse response function as
follows

R
x(t) = fo n(t-T) £(7)dT (14)

where

h(t) = exp(- Yt) sin w, t

d

oy = (= Y%, w? e k/m, Y- ofomu,,

m, k and ¢ are, respectively, mass, epring oonstant and damping coefficient
of the system considered. '

The response x(t) is to be stochastic process in case that the input
acceleration f(t) is a stochastic process, and its probabilistic properties
are described perfectly by expectations and covariances. For the nonstation-
ary random process f(t) expressed in Eq.(1) which is Gaussian with zero mean,
the response x t) is also Gaussian and its expectation is zero.

The auto-—
covariance K . t1,t2) of x(t) is written as follows;
K, (+,,%,) = B[x(¢,) x(t,)]
¥ (b2
- (o (O Kop( T4y Tp) B(ty- T,) Blt,- T,)dT aT, (15)
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where X_,_( f1,'T‘) is the autocovariance of input acceleration f(t) repre-
sented in Eq.(6)% Substituting Eq.(6) into Eq.(15), it yields to

o .t 1
K, (4,,%,) = = fo (01 {02 $(1,) ¥(T,) h(t,-T,) h(t,-T,)

.pg(q) cos (T,=T,) dT,dT,dq (16)

'By use of the following notations

1
I(1;51) = fo n(4=T) ¥(T) cossrdT

v an -
I,(75%) = [ h(t-T) ¥(T) singTaT

0
Eq.(16) becomes finally,

K (t,%,) = (:pg(n )13 T, (541, (138, )T (58 ]an (18)

Autocovariances of response velocity x(t) and acceleration X(t) are
calculated from above equation as follows;

2
o
K (B10%5) = Tt, ot, Ko (P11%2)
22 (19)
Ko(t1t) = S5, Kb to)

Substituting t1=t2=t into above equation leads to the expressions for var-
iances of response

@

0 (8) = 5 [ oyl )12+, 250 ar

5, 2(t) = = (: o (1) [E 200041 2(050) (20)
Fal® = 7 | r D[, (0,

where I(7;t) is the derivative of I(7;t) with respect to time and f (1)
is the correlation coefficient.

| Although 4 included in Eq.(20) is a probabilistic variable, it can be
treated as a parameter in Ic(q;t) and IS(Q;t). Accordingly, the analysis
of structural response for nonstationary random process expressed in Eq.(1)
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is transformed to that for a deterministic input excitation ‘+(t)cos 7t and
it reduces to the calculation of 10(7;t) and 18(7;t). By use of Eq.(12) for
deterministic function +(t), Io(7;t) and Ig(4;t) are expresses as follows;

(1) = at [Jc('z*,t*)+Jc(-'z*.t*>

* ¥ * * (21)
1,50 = a2 [5,(7 00,077 |

where
* * * * *
exp(-rw t ) t exp(1-t ) exp(1-t )
Jc(ﬁ*;t*)z 2 (- PRI sin(ﬂft*—7?+ 52 sin(q*t*-B)
2 w, («“+ g7) «“+ g
+— 5 zin(uh*t*+8)]
oA + P (22)
* ¥ * * ¥*
exp(-w 1 ) [t exp(1-t ) exp(1-t ) M
7 (154)= 2 [ s> cos(4 t )= ———— cos(4"t"-5)
2 w, (a4 %)% «“+ @

1 * %
+ 7;51755 cos(w, t +S)}

cmpit, e, yetanT (p/x), S=tan (20p/(P-@)],

w it X Wit ¥ ¥t
AT ST CE TSR

In Fig.5 are shown the results of numerical computation as an example.
The abscissa of these figures is nondimensional, normalized by peak time of
input excitation. These figures, from top to bottom, show the nondimensional
square root of ensemble average of input acceleration, response acceleration,
response velocity, response displacement and expected rate of threshold
crossing per unit time. It will be seen that the time lag between input
excitation and responses is considerable and that the peak time of response
displacement is about twice of that of input acceleration for the value of
0.8 of nondimensional natural period ™. This tendency is the more re-
markable, the longer is ™,

RESPONSE SPECTRUM WITH PROBABILISTIC PARAMETER

If random process x(t) and its derivative x(1) with respect to time are
governed with two dimensional Gaussian distribuxionz the expected number of

crossing over the level ¥ within the time interval t1,t2) has been given
by S. O. Rice(9) as

t @
W3ty = (5 (O £(4) p (3, %it)ax ab (23)

where pxi(§ yX;t) is the joint probability density. Let x(t) be a structural
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response to the nonstationary random process, then the response displacement
- x(t) and response velocity x(t) are also Gaussian process, and as py¢(x,%;t)
appearing in Eq.(23) Gaussian joint distribution density is used,

2,2 . 2.2
g, X =26 6-f’.XX+G' X
. 1
Peg(%it) = E exp[- = P PRI ] (24)

2ns_a.(1-£.)% )
xxv  Ixx

2_2 2
29, & (1—f&i

It is convéinient to deal with the rate of crossing per unit time
n( §;t) defined as follows;

g
NCY 5t,t,) = g: n(§ jt)dt
a

y m

RIS = (0 x(t) px:'c( 3 ,X3t)dx (25)

Substitution of Egq.(24) into Eg.(25) yields

n( §;t) = 'é’?f"i: exp[__ %(%)2][(1_fﬂ2)%{_ Pt ( 3 )2}

Ta% e [1ier Pk H ”»
(T £ fraere o =} (26)

Therefore, calculating the responses, that is Oy, 03 and Fgz, the expec-
ted rate of crossing over the displacement level ¥ within unit time can be
computed by the above equation.

If the expectation of response displacement and velocity are zero, a
rate of positive-slope crossing of positive level is equal to that of nega-
tive-slope crossing of negative level. Therefore let nD(t) be a sum of
these two quantities,

nD(t) =2n(¥;t) 4 (27)

Since nD(t) represents the expectation per unit time, an expected number
Np(t) for every set of excitation is given by integration in the time
interval (0,® ),

(") = w(F0,0) - [ m(a (28)

It is evident that ND(T*) is a function of the displacement level and
natural period of structures. Therefore, let Sp be a displacement level of
structural response, then

*
T ) (29)

*
ND('I' ) = fng Sp
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From above equation, it can be written alternatively,
* * ~
D = fn( T 1 ND(T )) (30)

This statement enables us to interpret the SDavT* curve as a kind of response
spectrum representing the relation between response level and nondimensional
natural period.

S

The way of analysis for response velocity is analogous to what has been
stated previously on the response displacement.

The numerical computation on the structural response has been carried
out and is illustrated in Figs.5~11. The seismic loading is assumed to be
a product of deterministic time function expressed in Eq.(11) and stationary
random process of which spectral composition is given by Eq.(12). The botZom
gragh in Fig.5 shows the rate of crossing of displacement level SDuO.thtp /

wy*s Since the area enclosed by this curve, which coincides with Np(7%),
is 1.02, it means that the expectation of response over the displacement
level Sp is about one. In the vicinity of t*nS in this figure, neverthless
the value of np(t*) is zero, the value of ¢, that is, the r.m.s. value of
response displacement remains a half of the peak value. Therefore we know
that the quantity nD(t*) is very sensitive to the displacement level Syp.

Fig.6 illustrates the effect of Sp exerting on np(t*). This figure shows
that the expectation Np(T¥) of response over the level Sp decreases rapidly
with increasing of Sp.

Figs.7 and 8 show the relation between the response displacement level
Sp, velocity level Sy and the expectations Np(T*), Ny(1™), respectively.
Since, in these figures, Sp~Np(T*) curve and Sy~Ny(T*) curve are almost
linear when plotted on a semi-logarithmic paper, it is found that the expec-
tation of response over the level decreases exponentially for increasing of
the level Sp. The parameter T*, representing the nondimensional undamped
natural period, exert much more effet on the response displacement than on
the response velocity and this on the high level rather than the low level.
Therefore, as to the response displacement, if the level is held constant,
the longer the natural period is, the higher becomes the expectation of
response over the level,

Fig9is alternative to Figs.7 and 8# and illustrates the relation of
response level Sp, Sy versus to period T". These figures, which correspond
to the relationship in Eq.(30), are considered to be a kind of response
spectrum which exhibits the characteristics of response spectra for actual
earthquake records, because the response level Sy increases monotonously
for increasing value of ™ as to response displacement and S¥ remains almost
constant as to response velocity. Since the ND(T*) and NV(T ) parameters
in Fig.9 give an upper bound(10) of the probability that the response
crosses over the level Sy, it is equivalent to the calculation of the
expected maximum value of response for a set of T +to find out the level
Sp for which the expectations Np(T*) and Ny(T*) are 1.0. Accordingly, the
curves for Np(T*), Ny(T*)=1.0 correspond to the response spectrum which is
calculated from actual earthquake records. Hence the curves for smaller
value of parameter in Fig.9 represent the conservativg regponse spectrum
and on the contrary, the case of larger value of Np(T ) and NV(T*§ is the
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reverse, Therefore it appears that the parameter in Fig.9 is a kind of
gsafety factor on the structural response for seismic loadings. Thus the
representation of earthquake motion by stochastic process enables us to
introduce the probabilistic guantity as a parameter in response spectra,

In Figs)JO and 11 are shown the relation between the response and pre-
dominant period of input excitation. In both figures, the value of Np(T*)
and NV(T*) are 1.0 and fp*=f tye Since the peak time t, of ensemble average
of input excitation is considered to be a constant, the value of parameter
f,* is so changed as to indicate the effect of the predominant frequency of
input excitation on structural response. In Fig.11, f, and t, are alterna—
tive to those of Fig.10. From these figures.it follows that ghe response
level Sp and Sy are inversely proportional to fb. Accordingly, if tp and
intensity of input excitation are assumed to be constant, the higher the
frequency of excitation is, the more the response decreases and if f, and
intensity of input excitation are constant value, the longer the duration
time of excitation becomes, the more the response level increases.

It is evident that the frequency characteristics and nonstationarity
of earthquake motion exert an influence on the response spectrum and that
their effect on structural response can not be neglected. Neverthless, the
response spectra which are calculated from actual earthquake records under
different circumstances fails to take into account the frequency character—
istics and dynamic properties which are inherent to observation sites and
are revealed on earthquake records.

CONCLUDING REMARKS

Since earthquake motion is a complicated dynamic phenomenon which is
essentially nonstationary and of a statistical nature, the representation
of earthquake motion as a stochastic process is acceptable for the aseismic
design of structures. From this point of view, the present paper concerns
the simulation of earthquake motion by a nonstationary random process in
which the frequency characteristics of ground can be taken into account.
Moreover, an analysis of structural response to these excitation is per-
formed by statistical method.

In this study, earthquake acceleration is represented as a nonstation-
ary random process which is described as a product of a slowly varying con-
tinuous time function and a stationary random process which has an arbitrary
power spectrum. For this excitation the structural response is very simpli-
fied and can be represented by the response to the deterministic function
of time. By use of this representation of earthqueke motion the standard
deviation of responses are calculated analytically and a method of gener-
ation of an artificial earthquake based on the Monte Carlo method is presented,

The response of structure to nonstationary random excitation is treated
as a problem of the threshold crossing and the expected number of excess of
response over a certain level is calculated as a function of the natural
period of the structures with single degree of freedom. With the aid of ‘
results of numerical computation the response spectra which contain a proba-
bilistic quantity as a parameter are presented in the figures. From these '
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response spectra the information related not only to the maximum value of
responses but also to the value of safety or risk is obtained. Moreover,
it is pointed out from the discussion on the effect of frequency charac-
teristics and duration time of input excitation on response spectra that
the usual response spectrum which is obtained as an average of some spectra
calculated from actual earthquake records is inadequate.

The information for the dependence of intensity, energy and spectiral
composition of earthquake motion upon time are still insufficient for the
simulation of earthquake motion by stochastlc process. Moreover, there
are many questions for the structural response of nonlinear and multl—
degree of freedom system to nonstationary random process.
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