SETISMICITY PREDICTION: A BAYESIAN APPROACH
L. Esteval

Synopsis. Paper aims at establishing probability distributions of intensities
and other earthquake parameters which are related to the probability distribu
tions of structural responses at given locations and times intervals. The nor
mal scarcity of records precludes a straight-forward statistical treatment.
Rather, prior distributions of magnitudes in relevant volumes of the earth
are established on the basis of major geologic features; through use of Bayes'
thearem, statistical information is incorporated to obtain posterior distribu
tions of magnitudes; semiempirical formulas lead then to probability distribu
tions of intensities and of other parameters at stations of interest. A new
applications of Bayes' theorem permits incorporating available information
about past earthguakes at those stations.

Introduction

Evaluation of seismic risk at given sites implies statistical prediction
of the ground motion parameters that are relevant to structural behavior.
Since only in exceptional cases do the available instrumental data suffice to
guantitatively describe ground motions at the site, use has to be made of data
other than local acceleration records.

Use of indirect data is mandatory. This work makes use of frequency-magni
tude expressions as well as of correlations between spectral ordinates and max
imum absolute values of ground acceleration, velocity, and displacement, and
also between these and earthquake magnitude and focal distance.! The data used
in those studies are affected by a great number of variables, including local
ground conditions, nature of geologic formations crossed by the seismic waves,
shock mechanism and many others. Consequently the ensuing correlations display
great dispersion. In particular, the variability due to the nature of local
ground properties has been partly eliminated by restricting the scope of such
studies to sites with intermediate sbil, comparable to a stiff clay or a com-
pact conglomerate. Dispersion due to shock mechanism and geologic formations
along the path of seismic waves remains, but its consequences are taken into
account in this work.

Seismic risk prediction, as treated in this paper, starts from the for-
mulation of a stochastic model of the process of earthquake occurrence (local
seismicity) near a given station. Then these correlations are incorporated and
a model is derived which includes probability distributions of maximum seismic
excitations at the station for given time intervals3,4,

The foregoing method has still an important drawback: seismic risk at a
site is practically defined from the frequency and magnitude of earthquakes
that may originate in regions of relatively small dimensions, of the order
of €00 to 800 km in diameter, but statistical data often do not suffice to
evaluate local seismicity throughout such regions. Earthquake resistant
design cannot be exclusively based on direct use of statistical data, since
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their lack might lead designers to either of two positions: assuming zero
seismicity or avoiding the decision. The former approach would freguently

be strongly unconservative, whereas the latter would be unrealistic: engi-
neering decisions cannot be postponed; they should be taken after making

the most efficient use of every available piece of information, regardless
of how incomplete it may be. Engineering judgement has played, and will con
tinue to play even in the frame of modern analytical formulations of design,
an important role in interpreting data other than statistical, or in extend-
ing or adapting to the region of interest the conclusions derived from other,
better studied, regions of similar geotectonic properties. Formal manipula-
tion of information of different nature, including statistical data, is ac-
complished through the use of bayesian statistics, as described below.

Correlations between earthquake properties

The scope of this paper will be limited to earthquakes of moderate du-—
ration (several dozen seconds) recorded on soils of intermediate properties,
when focal distances are shorter than 600 km. The accelerograms of such mo-
tions are rather chaotic and jur+ify the development of theoretical studies
treating earthquakes as stochas. . processes. As a result of ssuch studies,
it has been possible to establish correlations between the amplitude of
ground motion (maximum absolute values of ground acceleration, velocity or
displacement) and the expected ordinates of the response spectra, as well as
the propapility distribution of maximum spectral ordinates divided by their
expectation?.

Prediction of spectral ordinates according to the method adopted in
this paper requires computation rf maximum absolute values of yround accel-
eration, velocity and displacement in terms of magnitude and focal distanceX
The empirical expressions have the form]

y = CekM R A ()

where C, kK and g are empirical constants, M is the earthquake magnitude, y
is the maximum absolute value of ground acceleration, velocity or,displace-
ment, and R is a modified focal distance, equal to (x2 + h2 + r2)? Here,

x is the eplcentral distance and h the focal depth, both in km, and r is an
emplrical constant equal to 20 km.

Observed and computed values of a and v (maximum ground acceleration
and ve1001ty) were analyzed, and their rati.s represented on normal proba-
bility paper following Gumbel's method® (fig 5). A distribution composed of
two segments of the lognormal family was adjusted to each set of data. Stand
ard deviations of 1ln (a/ac) and 1n (v/vg) were found to be 1.5 and 1.0, re-
spectively.4 Here, subscript c stands for computed and ln means natural

logarithm.

O These are not the only significant quantities. A more refined study might
decrease the dispersion in the correlations, at the expense of considera-

bly wider analysis of statistical data.
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Local seismicity statistics

Instrumental  data on earthquake magnitudes are available only for e~
vents occurred since the beginning of this century. For regions of relative
ly large dimensions (fig 1) or of high seismicity, these data suffice to ob
tain expresions for ¥\, the expected number of earthquakes, having magni-
tude greater than M, and originating per unit time in a given volume of the
garth crust. The best known of them assumes a linear relationship between

log vy and M.
:/M=ae_'BM . (2)

This equation may be objected since, according ‘to Gutenberg and Rich-
ter's relationship between magnitude and energy, its right portion predicts
and infinite amount of energy liberated in earthquake activity per unit time
if B is not greater than 1.5 1n 10 = 3.46, while empirical data lead to B
values usually smaller than 3. Fig 2 shows this, as well as the poor fit of
eq 2 for magnitudes greater than 8. Even if the expression were valid for a
macrozone such as the Circumpacific belt, it would then not be valid for
portions of it, since the additions of terms similar to the second member of
eq 2 does not give place ta a function of the same form, unless /3 is the
same for all regions. Although more adequate expressions may be adopted,
eq 2 will be used in this paper, for the sake of simplicity, to illustrate
the proposed formulation of seismic risk appraisal.

Bayesian estimation of local seismicity

Let Hi, 1 =1, ..., n be a set of mutually exclusive hypotheses, P(Hi)
their associated initial or a priori probabilities of being true, and A an
event that may occur in combination with anyone of the n hypotheses. Let
P(A|Hi) be the conditional probability of occurrence of A in case Hi were
true. From the fundamental law of conditional probability,

P(Hi|A) = = (Hé%ii)ALHil - % .

This equation is known as Bayes' theorem. In it, P(Hi}A) is a modified,
or posterior, probability of hypothesis Hj being true, once event A (statis-
tical observation) is known to have occurred.” For its extension to local

IX Severe criticism has been made of the use of Bayes' theorem, on the
grounds of the apparent arbitrariness involved in choosing the prior dis-—
tribution. However, alternate methods include concealed assumptions equiyv
alent to arbitrary prior distributions.¥ The fact is that every decision
we take, either in engineering or in any other rational discipline, is ar
rived at after an implicit, perhaps approximate, bayesian formulation for
assimilating subjective concepts and factual evidence. A priori subjective

. information is far less arbitrary than it may seem at first sight if prop-
er judgement is applied in extrapolating to the case of interest the re-
sults of similar, better studied phenomena.
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seismicity estimation, let N (M1, Mo t) be the number of earthquakes with
magnitudes in the interval (M4, Ms), that have occurred during time period
t within a specified region of the earth crust. This number will be assumed’
to be a Poisson process with mean \ (Mq, Mg) per unit time and volume, and
independent of the corresponding processes in adjacent regions and inrany
other magnitude intervals: hence, N (M, t) = N (M,oo ; t), the number of
earthquakes exceeding a given magnitude during the specified time interval,
will also be a Poisson process w1th expected value V A m €, where V is the
volume of the region considered.'V

Assume that V A M= v v may be expressed as a function of known form
and unknown parameters, V M = V y (21, «+ey Zp). Let £ (29, -+, z,) be the
a priori m-dimensional joint probability density function of the parameters,
and A the event that during time interval t, nq, ..., n earthquakes have
occurred with magnitudes in the intervals (Mo' Mq) veey (Meoq, M), respec—
tively. Then, if A 1V =V yi -V pi-1» the probability of A, given the hy-
pothesis (Zj = zj, j = 1, ..., m) is obtained as follows.

kK - apvt ‘“‘L '
P(A 2 «eevy zy) =Te 7T (0w Y (4)
=4 n!

Hence, the posterior distributiaon of the parameters would be

k —A thA]Vf
re (5)

f(zy e erey zZn1A) =KF (2, +u.u, zm)

where K is a normalizing constant. Practical use of eq 5 may be objected,
since it does not produce a simple posterior distribution that may be ex-
pressed in terms of a few parameters. For applications, moments have to be
computed through numerical integration. On the other hand, this approach
permits simultaneous use of statistical data concerning all magnitude ranges
to modify prior information, also for all magnitude ranges.

A second procedure, much simpler, although much more restricted, will
be described, and some approximations introduced to widen its scope. It con-
sists in determining in separate steps the (unidimensional) distribution of
V u for each M of interest. Each successive application of Bayes' theorem
deals with a given M and uses only the statistical information coming from
events in which such M is exceeded. Great computational advantages are
achieved if a gamma distribution is chosen for each vV p. Our assumption that
we deal with Poisson processes makes this choice "natural," as the gamma dis
tribution is the conjugate of Poisson's and the choice brings ebout simplifi’

ivData contradict the assumption of stochastic stationarity and time and
space independence from past events.S There is an svolution in local seis
micity, and earthquakes tend to cluster in time and space; this is true :
sven if one disregards foreshocks and aftershocks in the analysis., However
we shall retain the simplifying assumptions quoted, on the ground that thg‘
are probably adequate for the time intervals in which we are mastly 1ntergl 
ed-of the order of expected life spans of civil engineering works. e
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cations in numerical work and in interpretation’. Analytically,

e'”M'(VMiir (&)

f(Z/er,t): K1f (I/M) o

where r is the number of earthgquakes with magnitude greater than M which
occurred during time interval t. If f (¥ y), the initial density function,
is the gamma distribution with parameters r', t', the posterior distribution
will be gamma with parameters r" = r' + r and t" = t' + t, VThe initial and
posterior expectations of v j will be r'/t' and r*/L", whereas the corre-—
sponding coefficients of variation will be r'"!/2 and r"~1/2| respectively.

The latter formulation fails to incorporate all significant statistical
information. This becomes clear il one considers the discontinuities that
would ' result, for instance, in the posterior expectation of vV at the magni
tude value above which no events had been observed. Thus, any information
about mean number of earthquakes of magnitude greater than 8 should convey
additional, although somewhat vaguer, information concerning magnitude 8.5.
This suggests the adoption of a conservative envelope of the results of the
double criterion that follows. The first altermative is derived from the
magni tude-by-magnitude procedure of eq 10. For the second, let My be a ref-
erence magnitude for which ¥ M may be estimated with relatively little un-
certainty, and M = My + AM a magnitude, the estimation of whose ’/M might
be improved by using information relative to Vpg. From eq 2,

VM/Z)M°= e"B(M‘Mo) (7)

Therefore, according to our hypothesis, once Vg is known, uncertain-
ty in vy will come from that in 3. If the latter variable is assumed to
possess a normal distribution, the coefficient of variation of I/M is given
by eq 8e. In the bayesian treatment, both ¥ g and 3 are assigned initial
distributions. If no statistical information is obtained for M > Mg, a con-
servative estimation of V) in that range may be obtained if it is assumed
that the distribution oF[B remains unaltered while that of I/MO may be mod-
ified. Prior and posterior expectations and coefficients of variation of

vV would be

V These are appealing properties of the conjugate distribution in this case:
prior and posterior belong to the same family; their parameters may be in
terpreted as fictitious times and numbers of events; and the order in
which statistical data are incorporated is irrelevant.
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e (v,) = €' (¥,) o (M=) (Ra)

2 _ a2 2 2 12
c (I/M) =c' VMo) S »( VMO) (8b)

en(v) =en(¥,) &0 (M = M) (8c)

2 2
c?(V,) = ?(¥,) e +ci? v e?(v,) ()
where ‘

c,'|2 =exp [ (M- MD)2 052] -1 (8e)

~and [30 is a parameter of the 'initial distribution of seismicity.

In these equations, prime and double prime mean initial and posterior, re-
spectively. More refined treatments may be adopted to take into account
possible modifications in the distribution of [3.

In what follows, the three criteria described for application of Bayes'
theorem will be referred to as the exact (eqs 4, 5), the step by step (eq 6)
and the modified (eqs 8a-e) methods. T

Bases for establishing initial distributions of local seismicity parameters

Some of the sources of significant information for local seismicity
studies are of geophysical nature, such as geotectonic features, studies of
regional strain and of energy available for sudden release; others are of
statistical nature, such as magnitudes, focal coordinates,and energy released
by earthquakes in different regions of the world. These are to be complementec
by conclusions derived from similarity with other physical phenomena and by
qualitative descriptions of earthquake history over long time periods. Ef-—-
forts to interpret data from all these sources and to express them quantita
tively in earthguake risk terms are in an embryonic stage. Consequently, let
us for the moment limit our attention to the way in which conclusions might
be obtained from the similarity of tectonic features. According to the pres
ent state of knowledge, only statements about seismicities to be of roughly
the same order of magnitude may be made on the basis of this similarity. Ac
cordingly, geotectonic information will only be used here for the purpose
of dividing the crust into regions, without introducing prior distributions
of local seismicity parameters on the basis of this information alone. The
essence of our procedure for that effect will stand on the estimation of
the seismicity of narrow zones from that of similar, but wider zones, for
which statistical data permit a direct evaluation. Due account is taken of
the uncertainties about the relationship between seismicities of pboth re-
gions.

Take now the earth crust divided into three macrozones defined by the
volumes that correspond to the Circumpacific belt, the Alpide belt, and the
rest of the world, as shown in fig 1. For magnitudes in the range 6-6.5,

statistical data are enough for a relatively precise estimate of Yy for
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each macrozone. If a gamma distribution is assumed for ¥ u, ignorance of pri
or information is tantamount to taking r' = t' = 0, wherefrom r" =r, t" =¢t,
and, hence, the expected ¥\ and its coefficient of variation depend only on
statistical information.Y! After independent treatment of ¥\ for each M, a
smooth curve is fitted to the computed values of E" ( vV y) = r"/t", Likewisg,
lower envelopes are fitted to the computed coefficients of variation c"=r'-z
for the various magnitudes (fig 2). Abrupt discontinuities in the computed
values of ¢" are due to the different lengths of the observation periods
that correspond to each magnitude range.v” The use of the lower envelope for
representing the adopted coefficient of variation aims to account for more
complete use of information. Now we may proceed to smaller volumes of the
garth crust, by applying Bayes' theorem to each of them. Their prior dis-
tributions will be assumed to be gamma, the proper parameters being esti-
mated from those of the macrozone including the zone of interest, as follows.
Let V be the volume of the macrozone and V' that of the smaller one, and Ay,

XfM, the corresponding seismicities per unit volume. For any given magni-
tude M the following identity holds,

NE(N/A)X

The spatial variation of seismicity is incorporated in the ratio AX/X
while our ignorgnce of the macrozone's seismicity dictates the distribution
of N . Thus, X /A and X\ are independent variables. Hence,

E(N)sE(XN) (9)
c2(N) = c2(N/X)c2(N) + c2 (XN /X)) + ¢c2(\) (10)

The assumptioq of spatial independence of selsmicity, coupled with the
restriction that X should be equal to A when V' =V, gives

G (N/N) = (vu)T -1 (11)

where ¥ (M) is a parameter characterizing the macrozone in question. Empir
ical estimates of 02( X'/X) in terms of V'/V for various M were obtained
for the different macrozones (Fig 3). The increasing deviation of the empir
ical values from the theoretical ones, when V'/V<0, are partly due to the
increased error in estimation of ¢ as r/t for very small volumes. Applica
tion of egs 10 and 11 for magnitudes outside the interval 6 to 7 gives place
to very high coefficients of variation, as compared with those within it.
This again is a result of neglecting the information that earthquakes in a
given magnitude range provide about other intervals. Proper account of that
information may be taken in an approximate manner, if egs 8 are applied,
and Mg is taken as the magnitude which minimizes c2( ¥ ') in eq 10.

VI Historic evidence might be included, leading to other values of r' and t.

VIl These periods are3, 35 and 49 years for the intervals 6 < M<?, 7 < M<?7.8
and M 2 7.8, respectively.10
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Example. Consider region 5 in the map of fig 1. According to geology, there
seems to be no reason why seismicity should vary within it. Hence, uniform
seismicity will be assumed throughout it. Its area is 129 x 103 km2, as com
pared to 94 x 106 km2 of the Circumpacific belt, to which this region be-~
longs. Gutenberg and Richter10 do not report any earthquake during the
three-year period about which complete information is available for the
range 6 £ M<7. They report only one earthquake of magnitude 7.5 during the
35 period valid for the corresponding range. The. prlor information is shown
in fig 4 by means of curves for E' (V}y) and c'2 ( ¥'4). The first was ob-
tained simply by multiplying E (Vy), for the Circumpacific belt, by V'/V =
129 / (94 x 103) 0.00137. As regards the coefficient of variation, consid
er magnitude 7.5, por 1nstance. From fig 2, c2 ( v 7,5) = 0.0034, while
from fig 3, c2 ( V/V ) =

Hence,

¢ (¥, ) = 0.0034 x 9.6 +0.0034 + 9.6 = 9.63

Again, a lower envelope is fitted to the values of cz(l/hj computed as
shown, but again this is not enough to reflect all the information available.
For application of the second alternative procedure, My is taken as 7.0,

as 2.16 (the value for the Circumpacific belt as a whole) and c'2(/3)
% 10. From fig 4, the prior expectation and coefficient of variation of
Cc 1/7 are

E' (¢v7) = 0.0208
2 (V7) = 5.11
For M = 8, for instance, eqs B8 a-c lead to the following:

£' ( vg) = 0.0208 g72:16 (8 - 7)

= 0.0024
2 vg / v;) = exp (0.10 x 2.16° (8 = 7)) = 1 = 0.6

c'® (Vg) = 0.6 x 5.11 + 0.6 + 5.11 = 8.79

-

Coefficients of variation of V'M for other magnitudes, computed accord
ing to the two proposed methods, are shaown in fig 4.

Posterior distribution of local seismicity

The different ways in which the prior distribution of local seismicity
may be defined lead to alternate statements of Bayes' theorem. Each of them
_makes use in different degrees of the available prior and statistical infor
mation and leads to non-equivalent results expressed in various manners. o
Whatever the form in which these results are initially presented, they can
always be converted to the distributions of V'M for all M of interest. This
is not always the most useful way of presenting them for their applications
to earthquake risk evaluation, but it permits an intuitevely more meaning-
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ful interpretation. Fig 4 shows the posterior expectations and variation co-
efficients of V'M for the example of last section, computed under several
assumptions. Only for two magnitudes were non-zero statistical data availa-
ble: 7 and 7.5. They correspond to one earthquake of magnitude 7.5. Since it
did not occur during the three-year observation period considered for M<?7,
it was not taken into account in the application of the step-by-step criteri
on to that magnitude range. -

The assumption that the distribution of [3 remains unaltered is conser-
vative in this case for M>7.5. It permits to draw the line that represents
the posterior expectation of V“M. This is a straight line parallel to that
representing the prior expectation. Its vertical position was chosen by in-
terpolating between the computed 1”5 and V"7.5. Again, lack of statistical
information for magnitudes other than 7 and 7.5 caused the discontinuities
of curve 6, the posterior coefficients of variation computed according to
the step-by-step method. Curve 7 was obtained by the modified procedure,
taking Mg = 7.3 and applying egs 8.

Distribution of maximum intensity at a given site

Let N(y, t) be the number of earthquakes occurring during time interval
t, and having intensity (in the generalized sense) greater than y at the
site of interest; it can be obtained as the sum of a number of earthquakes
of different magnitudes and focal coordinates, occurred during the same pe-
riod.

If a deterministic correlation between M, R, and y is accepted, and if
earthquake generation processes in different regions are independent from
each other, and are assumed to be of the Poisson type, then N (y, t) consti
tutes a Poissaon process with mean rate of occurrence per unit time given b;
the following equation:

vy (¥) = fvx(M (y,R)) av (12)

Here, M (y, R) is the magnitude that gives place to intensity y at the ef-
fective distance R, and i.(M) is referred to unit volume. The integration
is carried to the volume of the earth crust whose seismicity may apprecia-
bly contribute to the occurrence of intense earthquakes at the station. Sub
script Y identifies computed intensities, predicted under the assumption
of a deterministic correlation between M, R and y. Both mean and variance
of VYb (y) as given by eq 12 may be computeda. For many decision problems
concerning earthquake risk, only the expectation is significant; it may be
obtained by using the expectation of A(M (y, R)), instead of the variable
itself, in the integral of eq 12. This was performed for maximum ground ve-
locities and accelerations at point A in the map of fig 1. It.was concluded
that E(v@k (y)) may be represented by an expression of the form Ky-{. For
the site selected, the corresponding values of these parameters are K =
7500, 5.18 and r = 2,56, 2.11 for maximum ground accelerations (cm/secZ)
and velocities (cm/sec), respectively.

The dispersion in the.data of fig 5 may be taken into account by re-
calling that, under the assumption that each event of a Poisson process may
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give place to a new event with probability p, the process of the new events
is also of the Poisson type, its mean rate being that of the original pror-
ess multiplied by p. Hence, if vy (y) is the mean number of earthquakes
per unit time whose actual intensity exceeds y, the following equation ap-
plies.

0,
E0A 0= [(- 5= E Ly (M) PLY>y) Yo 7 ]dn (13)

Expressions are also available for computing the variance of 7y (y).4
Their evaluation is more complicated than that of eq 13 because of the ap-
pearance of the covariances between the values of V¥ (y) for all pairs of
7M's. Hence, use will be made of bounds obtained for the two extreme cases
of perfect and of null correlation.

The probability term in the integral oF eg 13 is computed from the dis
tributions in fig 6. IT € (Vy, (y)) = Ky™", eq 13 leads to an expression
of the ratio y/yC of actual to computed intensities having equal recurrence
periods:

00 i/r
y/yc=(l'j; z"""P{Y/Yc>1/z} dz) (i4)

This ratio depends strongly on r, but not on y, if the distribution of
Y/Ye is independent from Ys. In the case studied, this ratio took the values
2.4 and 1.9 for ground accelerations and velocities, respectively. Further
applications of eq 13 are possible, for computing E ( VY) for other respon-
ses, such as spectral ordinates, whose distribution may be expressed in
terms of the amplitude of the ground motionZ,

Use of regional data

Direct regional information at a site may be incorporated when it exists.
Suppose that complete data of intensities Y are available during a given
time period. A prior distribution of VY (y) may be obtained, valid at the
origin of the given time period, and the intensity data incorporated accord
ing to the bayesian formulation. The prior distribution of ¥y (y) would he
the result of obtaining the posterior distributions of Vjy at the neighbor-
ing regions, and then using the correlations between M, y and R and apply-
ing egs 12 and 13. The posterior distribution of ¥/ should not include sta
tistical information of magnitudes occurred during the time interval for
which intensity data will be used, in order to avoid double use of informa-
tion.

At the beginning, mention was made of the importance of local soil con
ditions, and of their possible influence on the dispersion in the correla-
tion between M, y and R. While the treatment described in this paper was
restricted to intermediate soil, the same ideas may be extended to cases
for which one may .count on expressions similar to 1 and on the caorresponding
distributions of actual vs. computed values.
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Final remarks

A method has been proposed to assimilate all available information for
gstimating local seismicity. It provides means for assigning proper weights
to data of different nature and for taking into account the corresponding
uncertainties in the knowledge they supply. It gives place to use of intui-
tion and subjective judgement, which has been the rule in problems of earth
quake risk estimation. Unlike the traditional treatment, the proposed meth-
od concerns the criteria for expressing prior knowledge and its weight in a
quantitative manner as well as the ways in which it should be modified as
new information is gained. At the two ends of its scope the two traditional
approaches are found:. the purely intuitive and the purely statistical anes.
Since the acquisition of direct statistical data has to be a slow process,
earthquake risk prediction must rely on a mixed approach: this is the field
of bayesian statistics.
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Fig 4 Boyeéiqn estimation of local seismicity. Region 5
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Fig 5 Uncertainty in correlations between magnitude,
distance and intensity





