STATISTICAL INFERENCE OF THE. FUTURE EARTHQUAKE GROUND MOTION

By Hisao Goto(I) and Hiroyuki Kameda(IT)

SYNOPSIS

Presented are the results of a theoretical analysis of the statistical
properties of the ground motion in future strong earthquakes. The statistical
model of earthquakes is proposed so as 1o be consistent with the past records
of occurrence of earthquakes and with strong motion sccelerograms, on the
basis of which the methods are discussed to find the probability distribution
of the maximum ground motion in a single earthquake and that for a certain
future period. Also are discussed the r.m.s. intensity of the ground motion
corresponding to an earthquake of arbitrary intensity scale. Numerical results
are given in the form of charts and seismic maps.

1. INTRODUCTION

From the randomness of the sequence of strong earthquskes and of the
ground motion in earthquakes, it is essential to make a statistical evaluation
of the intensity of the earthquake for which structures are to be designed.
The structure may be designed for the earthquake with the maximum ground motion
corresponding to ‘a certain assignéd probability of excess or for a set of
earthquakes with a certain assigned r.m.s. intensity. Whatever the measure of
the earthquake intensity may be, there must be provided sufficient statistical
information based on the data of occurrence of past strong earthquakes and
seismograph records. Due to the fact, however, that even a most active seismic
region is struck by catastrophic earthquakes at intervals of tens of years, the
record of earthquakes before modern science is required. However, one can
readily understand that it is extremely difficult to obtain a complete one of
such a record. Fig.l, for example, shows'th? nu?ber of earthquakes felt to be
of intensity V or stronger in the JMA scale in every 200 years in Tokyo
and Kyoto computed by H. Kawasumi's method!) on the basis of the list of des—
tructive earthquakes in the Chronological Table of Science, 1966 (edited by
the Tokyo Astronomical Observatory). It is noted that for the most recent 200
years far more earthquakes are recorded than for other ages. It would be more
reasonable to interpret this as being that some strong earthquakes which
occurred in older ages are missing in this record than to believe that it is
a precise description of past seismic activities. The statistical model of
occurrence of earthquekes used in this study takes account of this possible
time-dependence of the record of past earthquakes which has been neglected
in former studiesl). -
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In analyzing the statistical properties of the ground motion in a single
earthquake, the seismic wave has been treated as a Gaussian random process
with the power spectrum determined from those for strong motion accelerograms,

With the aid of these statistical models of earthquakes, the probability
distribution of the earthquake ground motion in an arbitrary future period has

been derived. Numerical results have been obtained for the main islands of
Japan.

2. STATISTICAL MODEL OF EARTHQUAKES
(1) Sequence of Earthquakes

Divide the past ages into r intervals By ,B;,***,B, of arbitrary length
51552, ,5p, respectively, and suppose that at a certain locality Ny, (k=1,2,
««+,r), earthquakes occurred in the interval By, as shown in Fig.2. Let N
denote the total number of earthquakes for this locality and let NI1sNIps" %"
nr, of these N earthquakes were felt to be of intensity I,,I,+*+,Ip, respec-
tively. Then we have

N ZNﬁ—"anl

k=l

Our statistical model for this record shall be described as follows.
It 1s assumed that this record is a realization of N Bernoulli trials of which
nrysNy,, " NIy trials are-made for earthquakes of zntenszty Iy,Ip,+Im, res-

pecttvely The probability Py that the earthquake in one trial will occur in
the interval By is given by

Ph:Nh/N teecssrretcsecsans (1)

The probability Py is considered to represent the moment of the interval
Bk in the whole record. By making a weighted evaluation of earthquake danger
in each interval with the aid of such Pr, the usefulness of the record of past
earthquakes whose accuracy is likely to vary with ages would be improved to a
considerable extent.

If we assume that the intensity of seismic activity in the most recent
interval By, will not vary through a future interval By of length Sy for which
the earthquake danger is to be estimated, then it suffices to analyze a sub-
interval Bf' of Bp of length Se. The probability Pf that the earthquake will
occur in the interval Bf' in one Bernoulli trial is given from Eq.(1l) by

szP’Sf/Srz N’S//NS,- 000t 0s 00000V (2)
From the above discussions the probability P(kr,,kr,,***,KL,) that K,

kI RN ¢ I earthquakes of intensity Iy,Iz,°**,Ip, respectively, will occur in
the 1nterval Bf » hence in Bf also, is given by

P (kpy kiz oo, krm) = PL ﬂ‘ (krse.q.’s of intensity I,C B/’ )]
J—

— R\ p okpy(1— P \rbr) — T 5
Jrgll{(k]j)P/t’(l P,)” I"} Jl}lb(k.’])nl]’PI) @000 evrssreeveceene (3)
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where b(k;n,p) is the binomial distribution function. The return period TPI;
of earthquakes of 1nten51ty Ib or stronger is obtained as

T ¢=Nlo N n ® 8 90000 . et e e s
rrj = M5/ rl'éy. byl (1)

(2) Description of the Ground Motion.

It is clear that the time history of a strong earthquake motion is statis
tically nonstationary. However, it has been known from strong motion seismo-
graph records that its strongest part of duration of, say several or ten and
several seconds, are fairly stationary. Since we are concerned with the inten-
sity of the ground motion in earthquekes, it would be reasonable to deal only
with this strong part of the seismogram. Thus the earthquake acceleration
x(t) shall be represented by

x(1) = Af(t; ) 8(t) N £}

1; 05t

) =u_()—u (t—t1) =
S ) = w=ut—e) = { " 2=
where g(t) is a nondimensional stationary random process with zero mean value
and the variance of unity, B is a constant with the dimension of acceleration,
and uy(t) are the asymmetrical unit step functions. Hence x(t) becomes a
stationary process in the interval 0StZrt.

From the test of significance on typical strong motion accelerograph
records, it has been concluded that their amplitude characteristics are
nearly Gaussian?). Hence we assume the Gaussian distribution for g(t), hence
for x(t) also. Then the probability density ¢(x;t) of x(t) and the joint probd-
ability density ¢j(x,i;t) of x(t) and &(t) are represented by

\/QLMI cxp{ ;(%)2} N ()|
1
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d(x; t) =

¢j(x: 'i) l)

where
o= a(0) = (B0 = fo, /0 %)
0, = 0,(t) = {[Eg’([)]}w = ﬂ{"e,zfz(“ ) 40,22t r)}w cevesescssesccnes (8)
Pz = pxz(l) = M} = ﬂzgi:;-f(t; t)j(l; ‘t)'

0,0,

The standard deviations og, and 0g, of g(t) and §(t), respectively, are given
by

‘-—L[g(t)]—g S4(w)dw l PN T,



g, = E[g'()] = S: @S, (w)dw J

where S,(w) is the power spectrum of g(t). From the results of the spectral
analysis of s
-take the form!

gro?g motion accelerograph records, Sg(w) has been assumed to
2
b

S, (@) = 128( 3} )‘e"‘%

3w, \ w,

LI A SO BN AU AR B B A O (10)

where wg is the predominant frequency. The auto-correlation function R(x)
associated with Eq.(10) is obtained as its Fourier inverse transform:

R(z) = ;ii [ Sa(@) cos worde = {'1_1()(2;_3)’4_5(2;«13)‘}/{1 +(_".’i£>’}' ceeee(11)
Substitution of Eq.(10) into Egs.(9) yields
o, =1, a,z==lé?§w° tesvesssscsnsesses (12)
The same discussions can be made for the earthquake velocity v(t). By
analogy to Eq.(5), we set

o) = 8115 )| _etyas

R R R (13)
The probability densities related to Eq.(13) are obtained as

0= e [4(2)

9
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é,(v, 0; t) = 1 [:—-2(

21 0,3V 1 —p,° exp —.—IT—IpT’) {( :, )’ —2p‘,( :o )(_%)4’(-2——),}:] «++(15)

9,

where

o = ai()) = {EE(0} "

g, =

= ﬂdgof(l; ‘l‘)

00) = (B0} = #0094t )
Elv(t)v a,? .
Poy = Puy(t) = -LS—?&:-@ = ﬂ‘;ﬁ,—lf(t; ) St )

ot =E [ _ewal]= ("2,

- ® Q9O 0O SO ESSENPYN (17)
On substitution from Eq.(10) to Eq.(17), we obtain

eeessecsvsesesncs s (16)

and

2
a = e
V3 w,

® 0O 0000 0O BOBOEDBNCENBELIY (18)
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3. PROBABILITY DISTRIBUTION OF THE MAXIMUM GROUND MOTION
IN A SINGLE EARTHQUAKE

(1) Basic Analysis

In this section, we shall derive the probability distribution of the
maximum ground motion in a single earthquake for the statistical model proposed
in the previous chapter. First, let o denote the maximum ground acceleration
in a single earthquake described by Eq.(5). Then the probability distribution
¢g(a) of a is represented by

@ (a)y = Plmax|x(t) | S a; 0 £t S o] = P[|x(0)] £ q] Pa;r) sevescseses (19)
where

()| S o

Since x(t) is a continuous prgcess, we have, from the fundamental differential
equation for a birth process” s

Pla;t) = 1’[{ max|x({)| S a; 01 £t }

..é.lt...]).(a;t)z— co(a;l)Po(a;t) ’ ) oou.ooo-‘-c--l-oo (20)

in which
co(a, )dt =P[{|x(t1-dt)| >a|max|x(t")|Sa} ; 0Kt ]

_PI{Iz(t+dD)|>anmaxlx(t")|Sal ; 0St"<SE])
- Plmax (") |<a ; 0SSt

ceveencrecrecsan (21)

Solving Eq.(20) under the initial condition Py(a;0)=1, and substituting into
Eq.(19), we obtain

O,(a) = P[|x(0)] £ «] cxp{—gz Co(a; l)dt} cetsesenrisaeses (22)

Inasmuch as it is an extremely difficult task to find the exact solution
for eg(ajt), we make an assumption that cg(a;t) is independent of wheather
maxlx(t’)léa or not in the interval 0Zt’<t. Thus the process of crossing of
m(?)?ta becomes the Poisson process, and we obtain an approximation ¥g(a) to
dsla) as

¥, (a) = P[|x(0)] = ] cxp{-—gz ‘c'o(a;t)dt} ' ssessesecscisees (23)

where
c"(@; )dt = P[|x(t)| < @ ] |x(t+dt)[>a] /" P[lx(t)| < o]
= Nm(t)dl/P[[x(t)] éd] “Seecsvseeess s (Qh)
Here N,,(t) denotes the probability that x(t) will cross a positive threshold

valuc with positive slope or a n§gative value -a with negative slope in the
unit time, ™ich is represented by5 : e



0 =~
Nea() =S £ ¢;(—a, %; t)d:?-{»g 2;(a, £ £)dx A -5
-0 0

Tt is noted in passing that in the interval OftSt where x(t) and v(t)
are stationary, Eqs.(8) and (16) are simplified as

V30 nf
% = 26 __EL , @, =o0,=f§, g, = “‘T‘ﬂ(‘)o = 2.7386- T
\/3 wo \/3 n

Po = plz=0

PP (26)

On applying the statistical model of the ground motion proposed in 2.(2)
to these results, Eq.(23) yields

¥,(a) = CTf(y-%—-;) exp[—2.7386--%—0- exp {——%(%)z}/ erf (»\-/-gzr;) ] ceeeses (27)

Likewise, an approximation ¥g(v,) to the probability distribution ®4(vy) of
the maximum velocity v, is obtained as

~ V3 — T { 1 /V3 = y} Vi3 r
W,(vm)=erf<\/§—ﬁT° v,,) cxp[-—-\/B T, exp 2( AT, v, /crf(-\-/-ﬂé-ﬁi;-:vm):]
L B B R B B R R A B (28)
If we set
(;—_’_.g_..:f_ —_ v"‘:\/g E R R R TR,
o TF 1 T TR (29)
then ¥g(a) and @8(um) are normelized as

wm(()=crf<-:/£.2=—_)cxp {—2.7386—%—cxp(—-§’—>/:rf<_\7(3:)} ceseseenes (30)

0

f’.n(n)'—zcrf(—\?%-_—.) exp {—VT—%cxp(-—%)/crf(\—/%x)} eesesersaes (31)

Fig.3 are the plots of Yg,(r) and ¥g,(n) for various values of T/Tq.

and

The Poisson process approximation made in the derivation of Eqs.(27)v(31)
are considered to become better 1) as the power spectra of x(t) and v(t)
flatten, 2) for such a large a and v, that the crossing of x(t)=*a or v(t)=ty,
occurs almost independently of the previous crossing of the same level, and
3) for properly large t/Tofor which ¥, (z) and ¥5,(n) at relatively lower level
of £ and n, respectively, almost wvanish. Here the ‘accuracy of these formulae
is examined in two ways; i.e., they are compared with the theoretical upper and
lower bounds and with the results of a numerical simulation. It.suffices to
make these tests for the lower 1limit of 1/Ty, since the larger 1/T( is, the
more accurate the approximation becomes. In most major earthquakes t/T( would
fall into the range of some 10v100. Hence in the present test of accuracy,
/Ty is taken as 10 and 30; the latter value is used for the application in
the next chapter. A method for determining the lower and upper bounds of the
probability of excess in a random process has been presented by M. Shinozukas).

In this study, his method has been improved on so as to give closer bounds to
the real value.
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Choose the instants Tk such that

0= 1, <1, << Tpyy =1

as illustrated in Fig.lL. In this figure, 1y is the value of t at which R(t)
first crosses the t-axis, and 1, is the correlation time for which R(t) Dbe-
comes so small that g(¢) and g(Z+t,) can be treated as independent for any
T42Te+ It is noted that n(t) must be integral times three. Then the lower
bound ¢47(a) and the upper bound ¢, (a) of ¢5(a) are obtained as2),3)

O,(a) = 1_51 P[:((j: [x(ra)| S @] Nea(t) dt

- I 4 (5)]) <o o

0,,(a) = P[:fi)fx(rm < a] = {p,(@)}*** > 0,(a) vreevensrsecsnenss (33)

pule) = et (2 ﬂ>-~\/‘—_n [ e ( —E) et (%+R(2r°).6>}
terf { —}(%——R@ro)f)ﬂ de

v = V2(1—{R(2%,)}) , K=n(B | #=rctr 427

In the integration of Eq.(32), Eqs.(26) are no\longer velid and Eqs.(8) are
involved. The normalized form of Eqs.(32) and (33) analogous to Eq.(30) is
obtained, respectively, as follows:

(D.z..(()=crf(-_(_—)—2.7386 i e V2 (9) exp( (2) cesesecctessscases (3h)

V2 KT, 1—p,.() 2
(Dsun(()={P-n(c)}K+l ¢evevcscsesssecane (35)
where
(= ’;'é— ) Ptn(() =Pln('ﬁ‘> =p,(a)

From Eq.(11), we obtain
7o/ Ty = 0.2068, R(27,) = —0.4005

and it would suffice to take the correlation time 7, as
t /T, =35

Using these data, the lower and upper bounds of ¢.(a) can be computed for an:
1/Ty with the aid of Eqs.(32) and (33) or of Eqs.?3h) end (35), examples of
which are shown in Fig.5 for 1/T(=10 and 30 in comparison with Wsn(C) in Eq.
(30). It is observed that ®57,(Z) and Y¥g,(z) almost coincide in the range of
the non-excess probability of about 0.8. Thus it could be stated at least fo:
this range that the approximation by Eq.(30) is good enough, since from the
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statistical meaning of ¢g7(a) and ¥g(a) we can assert that they both will
furnish good approximations to ¢s(“§ for a high probability level. For the
lower range of [ corresponding to a lower probability level, the question how
well Ygy,(2) approximates the real distribution does not pose a serious problem,
since it almost vanishes for such g, and indeed so does the upper bound ¢g,,(z).

Next, the numerical simulation was made on a digital computer, in which
219 sample accelerograms were generated for 1/T(p=10 and 73 of them for tv/Ty=30.
I'ig.6 shows the experimental distribution thus obtained compared with Wsn(c),
which demonstrates that the experimental and theoretical values are in fairly
good agreement.

The same discussions have been made on the maximum velocity, ior which
similar results have been obtained. From these discussions, it would be
appropriate to conclude that Eqsf27)v(31) due to the Poisson process approx-
imation is available with sufficient accuracy to represenc the probability dis-
tribution of the maximum ground motion in a single earthquake.

(2) The Intensity Parameter B8

The parameter B in Eq.(5) is to be related to the intensity of earthquakes.
In this study, BI which denotes the value of B for the earthquakes of intensity
I is determined so that the mean value of the maximum ground acceleration in
a single earthquake of intensity I may equal the earthquake acceleration oy
obtained for the same intensity from the empirical formula proposed by seismol-
ogists; i.e., we set

Lla] =S:{l—-@,(a)}da=a, sessessssesssssses (36)

If we use the approximate distribution functions Y¥g(a) and ¥g,(z), we have

Bla] = | (1—¥ (@)} da = 5, | (1-¥,(O)}dC = o,
Hence BI is obtained as
/91=a1/$:{1-—y7.,.(5)}d( s eev e s s esevsv s e (37)

As we see in Eq.(26), Br? represents the variance of the stationary part
of the accelerogram. Hence By would serve as a direct measure of the earth-
quake intensity in the structural response analysis in which the structure is
subjected to an ensemble of random earthquakes with a certain assigned r.m.s.
intensity. Fig.7 is a plot of BI/aI versus t1/Ty. It is noted that Br does not
change greatly in the range 1/T;=101100 which is of interest to us. This fact
simplifies the problem since we can assert that the duration of the earthquake
has little effect upon the mean value of the maximum ground motion.

(3) Determination of ar

/

N

The intensity parameter B8y (or B) is affected directly by what formula we
use for the determination of ay. In the present study, the empirical formule
proposed by K. Kanai7) shall be adopted. Kanai has proposed a formula with an

L6 . A-1



account for the predominant period Ty on the basis of the data of earthquakes
with Ipp~678, (Ipp: modified Mercalli intensity scale):

a,MM — 0.62 To-—i.:us 100.23GIMM (Cm/secz) , T,,: in sec vee o.aocouofcooooo <38)

For IMM=85 i.e., for I=V in the JMA scale, we have

aV_SOT‘””(cm/scc) ®os0eseceseses et (39)

For higher intensities, the values of acceleration proposed by JMA8) shall be
refered to. The middle wvalue of the upper and lower bounds of the JMA accler-
ation for I=V is given as 170cm/sec?, which corresponds to T9=0.395=0.ksec in
Eq.(39). We assume that the JMA values for higher I correspond to Ty=0.lsec’
as well and that, 1n this range of I, the earthquake acceleration is also
proportional to T~ 1.316  The middle value of the JMA acceleration for I=VI
is 320cm/sec?. Hence we have

T

—1.318
av[=320(0;) " = 96 To_l'am (Cm/sec’) esesectecvsosnrecese (39')

Extrapolating the same rule for the case of I=VII,we obtain the similar
formula for I=VII as

-1.310 ‘ ’
aVIl=470(~g~—;) = 140 7'0-""‘ (Cm/SCC’) s$ecesscrcesssvanse (39’,)

4. PROBABILITY DISTRIBUTION OF THE MAXIMUM GROUND MOTION
AT A CERTAIN LOCALITY IN A FUTURE PERIOD

(1) Formal Representation

If the probability distribution of the maximum ground motion in & single
earthquake discussed in the previous chapter is known, the probability dis-
tribution of the maximum earthquake ground motion to occur at a certain
locality in a future period can be determined with the aid of the statistical
model of occurrence of earthquakes proposed in 2.(1).

Let op denote the maximum earthquake acceleration to occur in a future
interval Bf of length S , and Ap denote its realized value. If R ree
Kim) represents the event that { 15kI; s ** kI earthquakes of in ens %I,IQ,
see I, respectively, occur in Bf then the conditional probability dlstrl-
bution Qc(uflkI]’kIQ’.'. »kIm) of af on the hypothesis of Rf(krl,k12,~~- klm)
is given by

wc(ajlklu kh PR klm) = P[A/ = a]lRf(kh; kll 'y klm)] =JI_Il {w'(af; II)}.” ecsoe (’40)

The events Re(Kkr, ,KT,,***,Kkpn) and Re(lp),lr,,° ", lry) are exclusive if
U(klb#llb) holds. With this and Eq.(3), we can derive the probability dis-

- tribution ¢ (a ) of the maximum earthquake acceleration in the future 1nterva1'
Qf in the following form:

mf(a/) -P[ U-O * U_B" k U {A.I = ar n Rf(k!n kras* kln)}]



nry nrs

=2 25 >__¢ P[ifsafﬂ Ry(kps krz sty krm)]
k=0 k;2=0 k;,, -0

n n
= Elj Efj 2 {wc(aflkn» klz PR k[m) P.:(kln klz s klm)}
kpy =0 kp,=0 ktm

= ’i.lj :V‘—'” E {ﬁ[{@l((t/’ ]j)}k[,b<k[j; Il,j,P)]} seepesssos v (hl)
k=0 kg,=0 k;,-o jm1 s

Likewise, the approximate distribution function Wf(af) of the future maximum
acceleration is obtained as

nry "z

Ve = 30 3 S5 (0 (7. 1)) kg3 ne PY)

kyy =0 klz"o klm'o et

cesesasnensansee (U2)

In the same manner, the approximate distribution function ¥f(vyr) of the future
maximum earthquake velocity Unf is represented in the following form:

y},(tl,,,f % % 2 {n[{yr (Umy' Ij)}k”b(ku;"u, Pf)]} escstssssssecse ()43)

k1 =0 kpp=0  ky,=0 It

In Egs.(L1)~(L3),

(apsI;), ¥slarp , and Ws(vm{ ;Ij) are the values , res-
pectively, of ¢s(af3 Ws(df), and Ws{vm

f in whic BIJ is used for B.

The mean values of ar and Umf are represented in terms, respectively, of

f(af) and ?f(vmf) by

Ele,] = S., (1~ (a))}da,
o ceeererereeiaaaees (LY)
E[tmy] = So (U=% (Umy)} dvmy

(2) Data of Past Earthquakes Prepared for Numerical Application

The results of analysis in the present study shall be applied to the data
of earthquakes available for the main islands of Japan. Here we deal with
earthquakes of intensity V, VI, and VII. Earthquakes of lower intensities are
neglected because of lack of data of such earthquekes in former times. This,
however, will not greatly affect the result since the acceleration for lower
intensities rapidly decreases and @s(af I; ) for such an intensity tends to
unity even for small af.

Every locality on the main islands of Japan are represented by grid
points taken at every 30’ in latitude and longitude. The shock intensisies
felt at these grid points were computed by means of Kawasumi's methodl/ for
all earthquakes indicated in the Chronological Table of Science (1966) whose
dates, locations and magnitudes are known.

From the statistical point of view, the length S, of the interval By
should be sufficiently large compared with Sg. However, S, must not be so
large that By, stretches over the ages in which the accuracy of the data of
past earthquakes greatly varies. In this study, we take S y=150years for
Hokkaido and S,=200years for other districts. Thus the numbers of earthquakes
N, Np, ny, nyr, nyry end the return periods Tpny, Tpyr, Tpyy Were obtained,
some of which are shown in Table 1.
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(3) Effect of 1/T

In computing the probability distribution of the future maximum ground
motion, we must assign some proper value for t1/7T;. We have seen in 3.(2) that
Br, hence the expected value E(z] also, does not change greatly with /T in
the range of our interest. This is also true when the shape of Yg(a;I) is
concerned, which gives us a prospect for the validity of fixing the value of
t/To.

The approximate distribution ar) of the future maximum acceleration
for Tokyo and Kyoto computed from Ef (42) for the seismic data discussed in
the previous section is shown in Fig.8 for T(=0.5sec, Sf=T5years: and 1/T(=10v
100. Variation of Wf(af) for different /T would be small enough for engi-
neering purposes. The expected value E[ar] computed from these distribution
functions with the aid of Eq.(LL) also varies in a small range; 328v336cm/sec?
for Tokyo and 255v262cm/sec? for Kyoto. In what follows, we use 1/T3=30 which
gives nearly the middle value of By between those for t1/T(=30 and 1/T(=100.

(4) Local Seismicity and Seismic Maps

The probability distributions VY (af) and ?f(vm ) of the future maximum
ground motion and their expected values E[af] and E Umf) were computed for
all grid points covering Japan. The length of the future interval Bfr was taken
as Sp=TSyears. Some examples of Wf(af) are shown in Fig.9, which shall be
discussed along with Fig.8.

The finite value of ¥.(0) results from casting earthquakes of lower inten-
sities away, and it represents the probability that no earthquake of intensity
V or above it will occur in the interval B It is also noted that the shape
of ¥e(af) varies greatly with localities. Fgr example, in spite of the fact
that” E[a,] for Kyoto is larger than that for-Miyazeki, the value of or corres-
ponding to the non-excess probability of 90% for Miyazeki is larger tE that
for- Kyoto. Thus it would be hard to find out some standard shape of Wf(af),
and therefore, when a precise probabilistic Judgment must be made for ar,
reference should be made not only to the expected value E[af] but also {; the
distribution function Wf(af) particular to each locality.

With this fact in mind, there is no doubt that the expected value E[ar]
serves as a direct measure of the future earthquake danger. Fig.l0 is & selsmic
map showing the distribution of E[ar] over the main islands of Japan. In Fig.10,
also are shown the seismic map for { he velocity E[vmf]

All discussions in this section have been made for the predominant period
of 0.5sec. Hence, when earthquakes with other predominant period Ty is in
question, all values of af and E[lar] in this section must be multiplied by
(T0/0.5)=1+316 and vype and E[vpr], by (TO/O 5)=0.316; in both cases T is
given in sec.



5. CONCLUSIONS

From the results of analyses in this study, following conclusions may be
derived.

1) With the aid of the statistical model of earthquakes proposed in 2.,
one can make a probabilistic analysis of the occurrence of strong earthquakes
and of the ground motion in earthquakes with due consideration of the possible
time~-dependence of the accuracy of the record of past earthquakes and with
that for a certain future period.

2) On the basis of this statistical model of earthquakes, methods have
been discussed for deriving the probability distribution of the maximum ground
motion in a single earthquake and that for a certain future period.

3) It has been proved by a theoretical analysis and the result of
numerical simulation that the distribution functions defined by Egs.(26)~(30)
due to the Poisson process approximation are good approximations to the
probability distribution of the maximum ground motion in a single earthquake.

L) The parameter B (or By) discussed in 3.(2) would serve as a direct
measure of the earthquake intensity in the structural response analysis in
which the structure is to be subjected to an ensemble of earthquakes with a
certain assigned r.m.s. intensity.

5) The shape of the probability distribution function of the maximum
ground motion in a single earthquake and its expected value are not greatly
affected by 1/Ty in the range v/T(=100v100 which is of our interest.

6) It can be stated from the numerical results that when a precise
probabilistic judgment of the future maximum ground motion in earthquekes is
required, reference should be made not only to its expected value but also

to its distribution function which has a shape particular to the locality
under discussion.

7) A rough prediction of the maximum earthquake ground motion in future
can be made by means of the seismic map showing its expected value. For this
purpose, the authors would like to recommend to use Fig.l0 which are based or
the method of analysis in this study.
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Table | Data of Past Earthquakes
Location Numter of Earthquakes Return Period (year) Se
?‘;% Name N Mr Ny Ny Nvx Trv Trw Tevu (year)
| Kushiro 3 3 | [¢] 2 50 75 75 150
2 | Sapporo | ! ! 0 0| 150 | © | 150
3 Akita 14 8 7 6 | 25 50 350 200
4 Sendai I 7 9 | | 29 157 314 200
5 Tokyo 31 15 14 10 7 13 24 59 200
6 Niigata 8 5 6 2 (0] 40 160 [+0] 200
7 Toyama 14 4 10 4 (e} 50 I775_ ® 200
8 | Nagoya 19 8 9 6 4 25° 48 19 200
9 Kyoto 39 13 20 18 | 15 32 600 200
10 Tottori 13 7 10 2 | 29 124 371 200
I Hiroshima 9 4 5 3 | 50 113 450 200
12 Kochi 9 4 6 2 | 50 150 450 200
13 Fukuoka 2 ! 2 0 o) 200 0 ® 200
14 | Miyazaki 6 4 4 | 1 50 150 300 200
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Fig.10 Seismic Map for the Expected Value of the Maximum Ground Motion
to Occur in 75 Years (To=0.5sec, T/To=30)
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