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SYNOPSIS

The effects of nonstationarity of strong-motion earthquakes are
studied. In terms of the probability of first passage during an earth-
quake, it is shown that for lightly damped linear-single-degree-of-
freedom systems nonstationarity does not appear to be too important.
However, for nonlinear-inelastic systems the effects of nonstationarity
may not be negligible. The differences in the elastoplastic response
spectra obtained with a stationary and a comparable nonstationary pseudo-
earthquake appear to increase with the degree of damage as measured by
the ductility factor.

INTRODUCTION

It is well known that because of irregular transmission the accel- .
erograms recorded on firm ground during destructive earthquakes have
the appearance of random time functions. For this reason the applica-
tions of random vibration and random process theory in aseismic design
has received increased attention.

It is not difficult to explain that the hlstory(?v)earthquake
ground acceleration is nonstationary with time-[ 1, 2] , i.e, the
statistics of the motion vary with time measured from the beginning of
the record. Furthermore, relatively simple nonstationary processes can
be constructed that produce ground motions very much like earthquake
records and cause effects similar to those of earthquakes on linear
structures [2]. Essentially this procedure has recently been used to
model earthquakes of various types [3].

While there appears to be no difficulty in generating nonstation-
ary earthquake-type disturbances using computers, the parameters de-
scribing the nonstationarity of the resulting pseudo-motions are
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difficult to estimate. It is, therefore, of interest to examine the
consequences of nonstationarity of earthquake motions Ffom an engineer-
ing viewpoint in order to assess whether or not nonstationarity is im-
portant in the stochastic modeling of earthquakes tor engincering purposes.

The purposes of the present paper are to briefly review a simple
model for strong earthquake motions, and to show results which indicate
the effects on the response of simple systems caused by nonstationarity
observed in such motions.

The nonstationarity considered here is of the type that is observed
in strong-motion records registered on firm ground and at moderate epi-
central distances. Therefore, the results obtained showing the effects
of nonstationarity are limited to the earthquakes of the type considered.

STOCHASTIC MODEL OF STRONG-MOTION RECORDS

A study made on the two horizontal components of four strong-
motion accelerograms registered at the west coast of the U.S., namely:
E1 Centro, California records of 30 December 1934 and 5 May 1940;

Taft, California record of 7 July 1952, and Olympia, Washington record
of 13 April 1949 indicates that correlation exists among the closely
spaced ordinates of the accelerogram. The solid lines in Fig. | show
the envelopes of the correlation coefficient computed by time averaging
segments of the accelerograms which contain high intensity acceleration
pulses. The use of time averaging here implies that within the strong
phase duration, the records are assumed to be stationary. The record
duration, usually considered for structural response calculations, is
not limited to the strong part of the accelerogram; the starting phase

as well as the decaying phase of the acceleration pulses are also
considered.

A simple stochastic model, which can include the properties of
earthquake ground accelerations described above, is the filtered shot
noise process. A shot noise S(t) can be defined as having the following
properties:
ms(t) =0 (1a)
and

COVS(t],tZ) = I(t])f)(tz-t]), t, 2t (1b)

in which m. and CoV. are respectively the mean and covariance functions,
§(t) = Dirac delta ?unction and the intensity function

o I_t___2
lo(x]) , 0<t<x]
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where Xy -and x, are times as shown in Fig. 2 and c is a constant. If
I(t) is "taken %o be a constant then S(t) becomes a stationary process
within the duration of an excitation. If the excitation is of long
duration then a stationary process, commonly known as white noise re-
sults: The constant I(t) of finite duration is shown by dotted lines
in Fig. 2. In the sequel, when I(t) is as described in Eq. 2, the
excitation will be called Input 1, whereas with constant I(t) it will

be called Input 2.

To incorporate the type of correlation observed in earthquake
records, the uncorrelated process S(t) is next passed through a filter.
Results obtained using three types of :linear ordinary differentiat
operators as filter have been presented elsewhere [2{ In general,
satisfactory comparisons with earthquake records.have been obtained
for second order filters. Denoting the random earthquake acceleration
by Y(t), the excitation process can be generated by solving

2. ..
i;% + 2 vy g%'+ w2Y = S(t) (3)

For the generation of pseudo-earthquakes from this model, S(t) is
treated as a sequence of impulses of random magnitude. These random
impulses occur at uniform and small time intervals. The random impulse
magnitudes are generated as uncorrelated Gaussian random numbers whose
~variance is determined from the intensity function I(t) [2]. Input 1
with zero initial conditions, therefore, constitutes a nonstationary
record. A 'stationary record is obtained with Input 2 and the initial
conditions determined on the assumption that the solution starts suf-
ficiently long in the-‘past so that Y(0) and ——Y(O) have become station-
iry. Since S(t) is Gaussian so is Y(t). Eat1onary and a nonstation-
ary record thus generated will be comEarab]e if the same random numbers
are used in generating S(t) for both records: This has been done to
generate a pair of comparable stationary and nonstationary pseudo-
earthquakes the results of which will be presented later.

Because in the range x;, < t < x ,"(t) is approximately stationary,
the filter frequency (f = 2rw) and damping y can be selected so that
the correlation coefficient of Y agrees w1th the results obta1ned from
the real earthquakes. This yields 0.5 <Y < 0.6 and 4 cps < f < 5 cps.
The resulting correlation coefficient is shown by the dashed llne in
Fig. 1.~ '

The structural responses calculated from the simulated motions
using the above filter and x, = 1.5 sec., x, = 15 sec., and ¢ = 0.18
to 0.23 sec. are in fair agreement with responses obtained from the
earthquake records considered. In Fig. 4 a comparison is made between
the deformation spectra of one simulated nonstationary motion and those
obtained for the NS component of El Centro 5/18/40 and S 80°W component
of Olympia 4/13/49. 1In preparing this figure the records were normalized
to have the same peak -ground velocity. Fig. 3 shows the comparison
between the average deformation spectra of 8 real and pseudo-earthquakes.
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Despite these comparisons, it should ?e.emphasiz&d tha% the esti-
mation of the parameters X,, X, and ¢ defining the nona%atzwnary.mcdel
are subject to gross varialions and also no c!gar—cut evidencte exists
that the earthquake records are stationary during the strong phase of
the accelerogram. It is, therefore, of practical interu?t to i?vuﬁti-
gate the effects of nonstationarity on the response of simple linear
and nonlinear systems. To draw specific conclusions in this regard, it
is desirable to evaluate the probability that the system response will
exceed prescribed response levels for the first time durihg the dura-
tion of an earthquake. The computational means available for the evalw
ation of the above probability of failure are limited at this time to
damped linear single-degree-of-freedom systems subjected to uncorrelate
excitation processes. Consequently, it is necessary to indicate for
what ranges of the system frequency it is reasonable to consider the
excitation as unfiltered. For these systems the effect of nonstation-
arity is studied in terms of the probability of failure. The results
from these cases are then extended to other linear and elastoplastic
systems by comparing the response spectra produced when systems are
subjected to member functions generated from stationary and comparable
nonstationary models. :

It is recalled that a stationary input to a lightly damped |inear
single-degree-of-freedom system may be approximated as a white noise
if the power spectral density is essentially constant for several band»
widths in the neighborhood of the system frequency [ 4. For the sta-
tionary pseudo-earthquakes generated from Eq. 3 the power spectral den-
sity is given by

1
3) = > L (4)
ot (- B2 )’

where O has units of scc.—]. This cequation iy plotted in Fig., & ve,
the frequency f = /2. It is seen that for systems with natural
periods Ty = 1/f > 2 sec. this curve is essentially flat.

EVALUATION OF PROBABILITY OF FAILURL

Preliminary Remarks

Consider a Tinear damped oscillator subjected to the base excita-
tion S(t). The equation of motion is

| U+ zewob + wéU = -S(t) (5)

where U = spring deformation, B = fraction of critical coefficient of |
damping, w = undamped circular frequency, and $(t) is a Gaussian shot

noise with’prescribed intensity function. It is assumed that failure
of the system occurs when U(t) crosses the barriers + B for the first

time during the duration of the excitation ty- The probability of
safety, therefore, may be defined as



Despite these comparisons, it should be emphasized that the esti-
mation of the parameters x,, X,, and ¢ defining the nonstationary model
are subject to gross varialions and also no clear-cut evidence exists
that the earthquake records are stationary during the strong phase of
the accelerogram. It is, therefore, of practical interest to investi-
gate the effects of nonstationarity on the response of simple linear
and nonlinear systems. To draw specific conclusions in this regard, it
is desirable to evaluate the probability that the system response will
exceed prescribed response levels for the first time during the dura-
tion of an earthquake. The computational means available for the evalu:
ation of the above probability of failure are limited at this time to
damped linear single-degree-of-freedom systems subjected to uncorrelatec
excitation processes. Consequently, it is necessary to indicate for
what ranges of the system frequency it is reasonable to consider the
excitation as unfiltered. For these systems the effect of nonstation-
arity is studied in terms of the probability of failure. The results
from these cases are then extended to other linear and elastoplastic
systems by comparing the response spectra produced when systems are

subjected to member functions generated from stationary and comparable
nonstationary models. :

It is recalled that a stationary input to a lightly damped linear
single-degree~of-freedom system may be approximated as a white noise
if the power spectral density is essentially constant for several band-
widths in the neighborhood of the system frequency [4]. For the sta-
tionary pseudo-earthquakes generated from Eq. 3 the power spectral den-
sity is given by

1
s) = =, - (1)
et 0 - DA 4 @)

-
the frequency f = Q/2m. It is seen that for systems with natural

periods T, = 1/f > 2 sec. this curve is essentially flat.

. -1 - - - . .
where 0 has units of sec. . This equation is plotted in Fig. 5 vs.

EVALUATION OF PROBABILITY OF FAILURE

Preliminary Remarks

Consider a linear damped oscillator subjected to the base excita-
tion S(t). The equation of motion is

/ U+ ZBWOU + wiU = =S(t) (5)

where U = spring deformation, B = fraction of critical coefficient of
damping, w = undamped circular frequency, and S(t) is a Gaussian shot
noise with prescribed intensity function. It is assumed that failure
of the system occurs when U(t) crosses the barriers + B for the first
time during the duration of the excitation t,. The probability of

. d
safety, therefore, may be defined as
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P (ty) = Prob. { lu(t)l <8, o<t <ty (6)

1

and
Pf(td) =1 - PS(td) (7)
is the probability of failure.

The variance functions of U(t) for Inputs | and 2 are shown in
Fig. 6 for a specific system. For Input 2, if the excitation duration
is sufficiently long the variance approaches the asymptote

S | (8)

The barrier level in Eq. (6) is measured by

B = a0 | (9)

where ¢ is a positive parameter.

In any dynamic system, the motion usually persists as free-
vibration after the excitation terminates. The probability of safety
defined in Eq. (6) refers to the forced vibration era only. As a matter
of interest the values of P_ are tabulated below for two cases and two

S
barrler levels. The following system parameters are used: T = 2 sec.,
B = 0.08. Duration of excitation is t, = 25 sec.; I(t) is for Input 2
durlng the excitation and it is zero ghereafter In case 1, P is
calculated for the duration of the pulse only whereas in case 2° one
cycle of oscillation after 25 sec. was included.

Values of Ps

o Case 1 Case 2
1.5 0.01287 0.01224
3.0 0.86888 0.86776

Method of Calculation

The numberical procedure used for computing probability of failure
has been successfully used before for the case of white Gaussian exci=-
tation [ 5], and the results from it have been checked with those obtaxned
from a simulation technique [6]. A slightly different presentation is
given here for purposes of clarifying the procedure as applied to case
of shot noise, and to give an indication that for long-period systems
the probability of failure may not be severely affected by considering
unfiltered motions.

; The solution of Eq. (5) at time t = t, + ot when U(to) = Uofand
U(to) = U, may be written as, t

A-1 : : 10{



U(to + At)

]

Uoh](At) + Uoh(At) + Y, (10a)

U(t0 + At)

]

Uoh](At) + Uoh(At) + Y, (10b)

where, a dot over a quantity implies differentiation with respect to
time,

-Bwot
e sin w,t,
h(t) = ———— d (11a)
w
d
~Buw _t Pw
0 o .
h‘(t) = e (cos wyt + y sin wdt), (11b)
At
v, = -] hE)s(t, + bt - g)d, (11¢)
o}
At
v, = -] h(e)s(e, + ot - g, (114)
o)
and
wy =W 1 - Bz (11e)
The Gaussian S(t) makes Y,, Y, jointly Gaussian; however U_ and Go
are not Gaussian. These random variables have zero mean. Denoting
the mathematical expectation by E the pertinent statistics are
At At

E(Y%) = L L h(é,)h(gz)E[S(t0 + ot - €)S(t + ot - €,))d,dg, (12)

Using Eq. (1b) this yields

At
e(v?) = | W2@)1(e, + bt - g)de (13a)
. [o]
Similarly At
evd) < [ i2
3 = | Rl +ac - g)ee (13b)
[o]
At
E(Y,Y,) = L h(€)h(E)I(t, + At - €)de (13¢)
t 402



The correlation coefficient
E(Y.Y,)
12
= (14)
2 AN
,\/E(Y‘)E(Yz)
and the joint density is
1 e-L(y],yz) (15)

mE(END) (1 - %)

g (y,»Y,) =
YyaY, 1772

where

' Y Y Y Y
Ly yy) = —— = - 2= s —2— |
"2 2 2 2 2 2
20 -0 €0 60D Jetd) e

Because S(t) for t < t, is iﬁdependgnt of S(t) in the interval
t < t<t_ + At the random vettors {U ,U } and {Y,,Y } are also in-
0 .0 o 1°°2
dependent. '

It is of interest to note here how any correlation in the ex-
citation caused, for example, By filtering S(t) will affect the fore-
going analysis. There will be .two 'effects. 1In the first place, the
statistics of Y and Y, as given by Eqs. (13a) through (13c) will be
affected. Define T a$S the value of v at which the first zero of the
correlation coefficient of the filtered model occurs, as shown in
Fig. 1. It is seen that T_~ 0.08 sec. This quantity is a measure
of the sharpness with whick the correlation in the excitation drops.
If At > v_ and the natural period of the lightly damped system is long
in comparison with 1 , i.e. T_>> ¢, in the first integral of Eq. (12)
the expectation will appear aS a defta function in comparison to the
function h and the statistics computed on the basis of an uncorrelated
input will be close to those of & correlated input.

The second effect of correlation in the input is to make the
vectors {U ,U } and {Y 5Y, 1 dependent. This dependence comes about
because thé excitation for times t- < t< t + At and t < t_ are no
longer independent. The dependencg between®these vectors will de~-
crease the longer is At in comparison to Ter However, in order to
avoid overlooking the possibility of system failure in the times
t <t<t_ + At, the time step At should be small in comparison to
tRe natural period of the system. An indication of the smallness re-
quired of At is given in Table 1. This table shows how P (25) varies
with At/To for specific system subjected to Input.2. These considera-
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tlons therefore indicate that if T >> r_ the vectors {Y],Y } and
{U U o} will not be h1gh]y correlafed.

On the ba51s of the above observations it is concluded that if
T >> 1 _ the elements affecting the computation of the failure proba-
b31ity will not be seriously affected by considering the excitation
as unfiltered. With one exception, only systems with periods of 2 sec.
or longer have been considered.

Continuing with the description of the numerical procedure, let D
denote the safe domain in the phase space. For uncorrelated S(t) the

conditional density of {U,U} given that {U = U U= Uy (u , ) are
in D} is °
v g(u,uluo,uo) = gY],Y (u~-a, 0 -b>b) (16)

where

{3.3 ?]Mt) h(at) { } (47}

,h](At h(at)

In the numerical procedure the domain D in the phase space is discre-
~tized into neighboring rectangular regions (au) -fA0) and each rec-
tahgle is identified by the coordinates at its center. If

p1j(L’m) = Prob.'tU =u;, U= ﬁj | Up = ugy» Uy = aom-k (18)

this conditional probability is evaluated from
(4,1"‘.\) =JI§(U,(I l uocr'ﬁm) dudu ' (}9)

where the‘integration is from {ui 2” U A— }to{u + ”,u + %H.},

Now denoting the unconditional probabilities as,
Pto 4 pe(ind) = Prob.{u =up U= g }

and,

]
c

Ptn(L,m) = Prob. {Uo

104



the' theorem of total probability gives

P ®,m) (20)

t

= z&,mZPij (L,m)p o

¢+ at (BJ)
o}
The probability of safety at t0 + At is evaluated from

g+ 80 =8 By () (21)

For problems with zero initial conditions

PO(O,O) = 1; pOLL,m) =0 for 4{,m # 0 and PS(O) =

For problems with prescribed probabilistic initial conditions Po (,m)
and P_ (0) can also be appropriately determined.

For the results to be presented the time step At = T /8 and on
the basis of results in [5] the following values have been used for
discretization of the phase space

Au

E(Yf)

= 0.653 to 0.676

—AY _ _ 0.521 to 0.55

e(vg)

in which expectations are for Input 2. Also domain D in phase space
is unbounded along the GU/w =-axis. This problem was dealt with by con-
sidering a high barrier in®that direction so that probability of ex-
ceedence is several orders of magnitude less than the corresponding
probability in direction of u-axis.

PRESENTATION AND DISCUSSION OF RESULTS

Effects of Nonstationarity

In Fig. 7 are compared the variations of failure probability
with barrier level for a system with natural period of 3 sec., B = 0.0:
and the two intensity functions shown in Fig. 2. The duration of ex-
citation in both cases is 25 sec. Clearly the nonstationarity in the
input affects the failure probability. However, the differences in
the failure probabilities corresponding to the two types of input are
not significant. :

For a linear system subjected to a Gaussian excitation a proba-
bility that can readily be computed from the knowledge of the variance’

Q
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function alone is the probability that the response U(t) will exceed

a specified barrier level at time t. The maximum probability of instan-
taneo&g ~rceedence is always smaller than the probability of failure.
This probability which occurs when the variance is highest has also

been computed and shown in Fig. 7.

For two systems having the same damping and barrier level, «, but
different frequencies and subjected to the Gaussian white noise, the
probabilities of failure at the end of equal number of cycles of oscilla-
tion will be the same. This is so because the statistics are functions
of the product w t. When white excitation is of finite duration the
system Wiﬂ\longgr period will have smaller probability of failure,
because it will have lesser number of cycles of oscillation during the
excitation and, therefore, the oscillator will have a proportionately
less chance of going into the unsafe domain of the phase space. Fig. 8a
shows this effect for systems with § = .02 and two different periods

subjected to Input 2. Similar information is shown in Fig. 8b for
Input 1.

The practical significance of nonstationarity for earthquakes of
the type considered here can also be examined by comparing the barrier
levels required for a prescribed failure probability. This information
is given in Table 2 for a failure probability of 5% for linear systems

_ with B = 0.02. The maximum difference in this Table for the periods
considered is 12%.

It is well known that the response of a linear system to a sta-
tionary input is nonstationary. The response approaches a stationary
level after several cycles of oscillation. The time required to reach
stationarity depends on the level of damping in the system; the higher
the damping the earlier will the response become stationary. In view
of the above observation that nonstationarity in the input does not
affect significantly the failure probability of a Tinear system, it
is of interest to know if the system response itself can be treated
as stationary over the duration of an earthquake. This is of special
interest in the case of Gaussian inputs and failures at high response
levels, because of the availability of theoretical information rela-
tive to the extremes of stationary Gaussian processes [7,8]. 1In
Table 3 are summarized the values of failure probabilities for Inputs
1 and 2 and a system having natural period of 2 sec. The barrier is
* 30_. The response for Input 1 starts from the rest position. For
Input 2 in one case the system has zero initial conditions and in the
other case called stationary start it is assumed that the response has
reached a stationary level at t = 0 and therefore is set in motion _
with probabilistic initial conditions having stationary Gaussian sta-
tistics. For the two damping values considered, the failure proba-
bilities obtained by assuming stationary response are on the safe
side and are of the same order of magnitude as the other probabilities
(for nonstationary response). This indicates that under some condi-
tions the extremes of stationary Gaussian processes might be of rele-
vance to the random response of systems to earthquakes of the type




considered.

RESPONSE OF ELASTO-PLASTIC SYSTEMS

The deformation spectra for elasto-plastic systems subjected to
a stationary and a comparable nonstationary pseudo-earthquake are pre-
sented in Fig. 9. 1In the resistance diagrams of these systems yield
levels in the two directions of deformation are the same, and unload-
ing from a point of maximum deformation takes place along a line para-
1lel to the initial elastic portion of the diagram. The frequency f
refers to that determined on the basis of the initial stiffness. The
ductility factor is defined as '

=
]
<"

in which u_ = maximum deformation for a prescribed excitation and
u, = yield deformation. For an elastic system pu = 1.

As it has been pointed out in [9], one convenient way of pre-
senting results for elastoplastic systems which is useful in design,
is to plot pseudo-velocity w u vs. f_ for prescribed values of the
ductility factor. In this manher the yield deformation which is
necessary to limit the maximum deformation to a specified multiple
of the yield deformation can be determined. Fig. 9 is such a plot.

It is seen from the spectra presented in Fig. 9 that for an
elastic system the difference between the responses produced by a
stationary and a comparable nonstationary pseudo-earthquake is
negligible. For the elasto-plastic systems considered herein the
differences are also small; however, the effect of nonstationarity
appears to increase with increasing ductility factor. Therefore,
for some nonlinear-inelastic systems the effects of nonstationarity
may not be negligible.
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TABLE 1 - EFFECT OF %ﬁ-on Pf(25)

o
Elastic Systems with To = 2 sec., B = .08
B_ .
Input 2, e 3
o
At
= Pf(25)
o)
1/4 0.08376
1/8 0.12848
1/12 0.14363
1/16 0.14961

TABLE 2 - BARRIER LEVELS FOR Pf(25) =

Elastic Systems with § = .02

5%

B
o4 = =
To <05 % Percent
Sec. Input 1 Input 2 Difference
1 3.00 3.25 8.3
2.70 2.85 5.6
3 2.32 2.60 12.0

TABLE 3 - COMPARISON OF FAILURE PROBABILITIES

Linear Systems To = 2 Sec.

B -3
(¢]
I nput Initial . Pf(25)
Conditions B = .02 B = .08
] 0 0.0140 0.0755
2 0 0.0335 0.128
Stationary 0.0791 0.155
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