RESONANCE TESTING OF MULTISTOREY INFILLED FRAMES
Introduction by D.V. Mallick Ph.D

For defining a tall building, the dividing line should be drawn where
the design of structures moves from the field of statics into the field of
structural dynamics. It becomes more important to ensure adeguate lateral

- stiffness of these buildings to resist loads which may arise due to wind,
earthquake or blast. As a result of the effect of earthquake tremors, for-
ces of inertia are developed in the structural elements of a building. If
the individual members are insufficiently strong they suffer residual dis—
placements and cracks, and the structure as a whole becomes unfit for fur-
ther use. In many structures it is desirable, if not essential, that the
amplitude of near-resomant vibrations encountered in service be decreased.
This can often be done by ensuring that the natural frequencies of the
structure do not coincide with the frequency of the exciting force; which
means that the natural frequency of either system should be known. In the
case of an earthquake it is impossible to predict the magnitude and the
frequency of the exciting force as both these factors are beyond human con-
trol. It is also not always possible to design a structure with a particu—
lar time period because the shape of the structure is largely determmined
by factors not connected with vibration. However, in such cases the magni-
tude of near-resonant vibrations will be determined by the damping of the
structure., It is essential therefore to investigate methods which provide
not only knowledge of the natural frequencies and mode shapes of a strue-
ture, but also give some idea of the damping which will be present. There-~
fore,l{a realistic study of a structure subjected to dynamic loads must in-
clude the determination of natural frequencies and mode shapes of the struc=
ture and, some quantitative idea of the damping which will be available.
In this paper, resonance tests will be described to determmine these three
properties of multi-storey infilled frames or, in general any structure.'’

There is not much literature available on the damping capacity of
infilled frames subjected to vibrations. There are a few references avai-
lable on the damping capacity of composite structures, with a speclal re-
ference to nailed plywood shear wall panels. Jacobsen and Kaneta Lhave
shown that for small plywood models, alternating load deflection tests
yield results that include the deterioration effects of nails and plywood
by the very nature of loading. Medearis and Young(z) have used the same
technique of cyclic loading for the nailed shear panels subjected to a
state of combined stress. Their approach is not diresctly applicable to
present study of infilled frames because, in their case, the shear wall ;
panels are connected through thne nails. The author carried out cyclic load .
tests(3)on infilled frames to determine their damping capacity. All the
references described above deal with the techniques of cyclic loading for
finding the damping capacity of a composite structure., Very little infor-
mation is available on the dynamic testing of composite structures. To =
study the actual dynamic behaviour of a structure, it becomes necessary
to assess the amount of damping available when the structure is in motlon,
Keeping this in mind, the author has carried out resonance tests oninﬁl-
led frames. ~ : Buit i

Resonance test

Tn this method the infilled freme is exciting hammonically at a c




force) of the response at other points is recorded, If the exciting fre-
qiency is varied in a controlled manner the recorded data may be analysed
to determine the maturel frequencies and mode shapes of the infilled freme,
tozother with the coefficient of equivalent viscous damping., Depending
upon the physical quantities which are measured, and the way in which the
experimental data is plotted, there are various techniques available by
use of which the plots may be analysed., Before describing these technig-
ues it will be necesstry first of all to study the theoretical background
to the problem,

Normal mode theory

In this theory, a real structure having an infinity of degrees of
freedom is approximated by a finite degree of freedom gystem, say n, provi-
ded only that n is large enough, With each degree of freedom of a gystem
is associated a principal or nommal mode of oscillation of the gystem,
Bvery principal mode is a pure hammonic motion, In general, the response
of a conservetive gystem having n degrees of: freedom, suhjected to forced
vibretion, consists of the superposition of the responses in each normal
mode of vibration, The response of a structure in each nomal mode, when
referred to normal coordinates, can be determined as if it was a single
degree of frerdom gystem vibrating with the natural frequency of that mode,
In this thec'y the effect of damping can be &ccounted for by introducing
a single damping factor for each normal mode. In matrix form, when refer-
red to normal coordinates, the damping matrix is then a dimgonal., Thus,
the equation of motion of a damped system in any one normal mode, can he
written as

iwt
MrZr K. (1 +ig) 2. =Py (1)
vhere M., K. and Fy. are the consistent gemeralised msgs, stiffness and
foree vectors assoclated with the rth mode specified by the generalised
normal coordinate 5, and

g =2b for w =p where

b is the ratio of the coefficient of equivalent viscous damping, c, to the
coefficient of critical damping, ¢, the latter being defined as the value
vhich ¢ would bave if the free motion of the system were just non-oscilla-
tory. The motion in any one mode, dropping mode subscripts, is given by

: t
MZ+K(1+ig)Z-Fei¥ (2)
for a sinple harmonic motion,

Cfmncteristic Phase Lag Theory

Fraeijs de vazbeke( »5) presented the charecteristic phase lag theory
of damped motion of a2 gystem with finite degree of freedom gystem, Unlike
the normal mode theory, the damping matrix considered by veubeke was a
square, gymmetric and real mtrix., The main features of this theory are
summa riged- below, d

'5cwrding to this theoryr, if an:n degree of freedom system with hys-
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teretic or viscous damping is made to vibrate by a hamonic force vector
of some frequency,w, then for each given value of frequency, there are n
modes of vibrations quite different from principal modes, which are called
forced modes of vibration for a given frequencyW. Rether than attempt a
complete and rigorous mathematical definition, only the pertinent proper-
ties of forced modes of vibration will be given here,

1, Each forced mode of vibmtion is agsociated with a phase angle, 6
and a hammonic force vector of given frequency,y , also called
'Forced mode of vibration'.

2

2. The displacements qq, q qn in any mode, say the
rth, are all in phas:e, %gving the phase a;xgle 6. ’

3. Unlike the principal or normal mode, the phase angle and shape of
any one of these modes varies with the frequency.

4. These modes depend only on the shape of damping and not on its
density.

5, When.w , the exciting frequency, equals pg, the nmaturel frequengy of
the s*(' principal mode of the gystem, then one of the forced modes,
say X 2} which corresponds to 90° phase angle, may be identified
with the sth principal mode y(s), that is,

8, = /2, x(s) - \,,(5)' vhen w = pg

For this value of w, thers will also be (n - 1) other forced modes corres—
ponding to the remaining (n - 1) root values of the phase angle 6y,

Based on the phase lag theory of damped moti?éx of a gystem the follo-~
wing conclusion, as stated by Bishop and @adwell ), is rewritten here to
understand the dynamic behaviour of damped gystem in generel,

The difference between heavily damped and lightly damped gpstem lies -
mainly in the behaviour of phage angle 6., In a lightly damped system the
angles 6, are either small or near 7 at off-resonant frequencies so that,
in a sense, the modes cluster together and the response is either in phase
or anti-phase with the excitation, At resonance frequency one mode
detaches itself, so to speak, and, over a very small range of frequency
sweeps from zero to near 771 . In a heavily hysteretically damped system,
the angles @, (w ) have grester initial values and sweep through the j
natural frequencies more gradually, However in a heavily demped gystem the.
angles O, approach 77 quite soon after passing through the natural freque-

ncy.

It can be inferred from the above statement that the normal mode ~
theory is quite adequate for lightly damped systems, amongst which fremes
with brick or concrete infilling can be included, For heavily demped s7s-
tems it is virtually impossible to find the response in a practical case
by using veubeke theory, because neither the diagonel nor the off-diagonal
terms are known at the start, All.that can usually he done is to assume
that the damping matrix is diagonal, amd use the normel mode theoxy,
mentioned before, to get some results, B
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Response Analysis

The motion in any one normal mode, using nomal mode theory, is
given by equation (2). Substitution of the trial solution Z=Re t into
this equation leads to

R = (F/K)/ {(1-6 /o%)? + 1g} (3)

where p2= K/m. Non-dimensionalizing the displacements in terms of the
static deflection, §st = F/K, the following expression is obtained

R = Sst/ {(1-(/p)P)” + ig) (4)

or in polar form

-i tan N g/(1-(u/p)>
e T (-G gy
The modulus of R and the argument, 7 s of the vector are given by
=4 1-(w/p)*)? + & (6)
and n = tan"Y(g/(1-(w /p')z)2 (7)
that is
Rogst, 1R - )

st. (8
{(1~(w /p)2)2+g%) {(1-(v /p)#) *+¢}
Bquationa (6), (7) and (8) describe the theoretical background of the
three techniques generally used in resorance testing, and each will now
be discussed,

The Peak Amplitude Method

This method hes derived its name from the plot of equation (6) as
shown in Fig,1, for a given value of damping, It can be seen from equa-
tion (6), that the maximum value of R occurs when wa p, which defines the
naturel frequency of th&svsten. The system is then said to be in reso-
nance, It can be shown that if oW is now chosen such that |R| max®/
IRT = ¥Z (see Pig., 1), then the co-efficient of equivalent viscous damp-
ing will be given bty

b g/2 = aw (9)
T

Thus, the required informmation, like naturel frequency and damping is ex-
tracted from the plot., In this method, the resonant vibration is agsumed
to take place in the corresponding principal mode, In the light of Veu-

. beke's phagse lag theory, the results obtained by using this method are

affected ty (a) the effect of damping which couples the modes and, (b)
the contribution from other modes at that frequency, But if the gystem
ig 1ightly damped then the analytical errors due to the above factors are



unlikely to be large,

If the natural frequencies of a gystem are close together, which is
very likely in real structures, then it is quite possible with the peak-
amplitude method that modes will be missed altogether, Whereas the effect
of heavy damping is that at the resomant frequency of a heavily damped
mode, extranzous vibration from other modes may be comparable in magnituds
to the vibration in the resonant mode, This may eventually result in
large error in the relevant damping coefficient,

Phage angle plot

The phase lag of the response vector with respect to the applied
force can be obtained from equation (7). Fig (2) represents the plot of
phase angle, v, , against the frequency for a given value of g, At reson-
ance, wap 8nd m =90°. The mtural frequency of a system, when vibra-
ting in one of its principal mode, can be determined hy the intersection
of the phase angle plot with the line m = 90°., In order to find the dam-
ping, substitution ofW=p *4W/2 into equation (7) shows that tann=*1
so that the value of b cen be found by measuring the width of frequency
band corresponding to tanm=* 1,

Pendered and Biahop(s)gave a modified technique for extracting the
natural frequency and damping from the phase angle plot, WNoting that
g = 2b¥w /p and using equation (7), we get

" = tan‘1[ 2 v /p _ (10)
1-(w /p)?

Now if m is differentiated with respect to w and resonance condition w=7p

is substituted, an expression for equivalent viscous damping is obtained

as given bealow.

b (11)

= 1 =1
p( dn/dw) p (slope at p)

Thus, the nmaturel frequency is obtained from the intersection of the phase
angle plot with the line w = 90°, as before, the coefficient of equivalent
viscous damping is obtained from the slope of the curve at this point,

The advantage claimed for this method of detemining b is that the phase
angle plot need only cover a small range of frequency in the vicinity of
the resonant frequency. However, the author considers this advantage to
be offset hy the difficulty of actually measuring the slope from the phase
angle plot as shown in Fig, (7). ;

The reason for this method of phase-angle plot not being popular in
the past may be due to the indirect role played by phase angle during res—
onance testing, In the peak-emplitude method, the change in the amplitude
of vibration with the change in frequengy of the exciting force can be
visualised physically, whereas the change in phase angle cannot be visua-
lised,

The author found that phase angle plot gives better estimate of natu-
ral frequency than the peak amplitude plot.
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Vector Plot Method

For a complex structure, the peak amplitude and the phase angle plots
can be very misleading as far as naturel frequency and modrl demping are
concerned, becsuse of the off-resonant contributiops of other modes,

These shorteomings were recognized by Kemnedy and Pancu who proposed an -
altermative method of plotting and analysing the results of & resonance
test,

When the demping matrix for a multi-degree of freedom gystem is dia-
gonal, so that a single damping coefficient is attached to each mode, the
pure response in any one mode is given by equetion (8), If the resl and
dmd ginary components of R relative to F are plotted on an Argand diagrem,
the result is as shown in Pig (3a), which is a circle with its diameter
passing through the resonant frequency point, If equal frequency interh)
vals are chogen the circumferential distance betwsen points can be shown
to be meximm at the naturel frequency., The naturel frequency cn there-
fors easily be detemmined, Kennedy and Pamcu have shoun that this method
o° vector plot in which amplitude and phage angle, both are plotted, is
r sre relisble than either the peak amplitude or the phase angle method in
exhibiting the existance of modes, and that the accuregy with which the na-
turel frequencles can be determined seems to be less affected Wy the pre—
sence of other modes, In a real structure, there will be some coupling be-
tween the modes, and the vector plot will not be as gimple as shown in Fig
{3), It will rether consist of a large number of circular loops, each off-
set from the origin ty the amount of motion in the other modes, The true
peak amplitude free from off-resonant contributions in the resonant mode,
c2n be determined with good accuraqy, first by plotting the curve and loca-
ting the naturel frequengy from the maximum spacing technique; then the
bast circle is fittked to the loop, placing particular emphasis on the part
of it in the immediste vicinity of the nmatumal frequency as shown in Fig,
{3b). The peak amplitude in that mode will then be given by the diameter

‘EJ of the circle, It is unlikely that these cirdles will pass through the
.origin, 0. The point J is celled the displaced origin for the mode, The
vector OF represents off-resonant contribution of other modes at the reso-
nant frequency.

s The modal damping can be found ty noting that the diameter RE (Fig,3b)
~ which ig parellel Yo the real axis, .corresponds to tan n = *1, so that agin

b = % = ("B‘"E)IZP. (12)

where p is the modal naturel frequency corresponding to the point H,

The vector plots obtained from the resonance testing of multi-storey
"~ infilled fremes showed that it is not possihle to read accuretely the va-
~ Ines of naturel frequengy WB and WE corresponding to B and B for a particu-~
" lar mode of vibration of a structure. For such cases the demping can be

. calaulated %ty wsing the following procedure, ; :

. Choose any two points, P and Q in the immediate vicinilty of the naturel
: "rfreg&’mmﬁ pp:lnt ﬂ_ mch that the vector line JP and JQ make equal angles with
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the resonant diameter JH, IfwQ -wP =aw, and w = p*&Y/2 ig qubstitu-
ted into equation (7), the expression for tan " becomes

tanm = g/(1~(p *AV/532/52) (13)
Because aw~ is small, equation (13) can be simplified to

tan = g/(av/p) .
For small values of AW, w=p and g = 2b, Therefore

b = (aw/2) tann . (14)

For frequency interval, ¥ , corresponding to points P and Q as shown in
Fig, (3b), tan n = * Cot 6,

Therefore
h = (aw/2p) Cot ®

or
b o= ( (1,:Q -w)/2p) Cot 6 . (15)

6 bheing measured from the resonant diameter as shown,
The nomsal mode shape o2n be determined quite accurately from the m-
tios of the peak amplitudes determmined by vector nlots at various points

when the structure is being driven at a naturel frequengy,

Resonance Tests in Infilled Frmames

The forced vibration tests were carried out on four-storey, three-
storey, two-storey and single-storgy, single bay square infilled frame as
shovm in Fig., (4), to detemine the natural frequency, mode shape and to
assess the dmount of damping associated with each normal mode of vibretion,
The infilled fremes were excited by a Goodman electrodynamic vibrator, mo-
del 790, driven throigh a Leak 50-watt amplifier hy Muirhead, two phase
L.F. decade oscillator, It wes assumed thzt the force exerted hy the vib-
rotor was proportional to the input current. The amplitude of the forced -
vibration was maintained constant hy keeping the input current constant e
'b“)_rou-ﬂ'? ut the experiment, The input current was also used as a reference
signal for the response of the frame,

The vibralor was suspended by means of high tensile steel bowden wire
as shown in Fig, (4), This type of suspension was designed so-that the
fundamental frequengy of the suspended vihrator is very low as compared to
that of the infilled frame,

The response signal at any point of the freme was picked up hy an in-
dnctance type transducer called the proximity meter. Ythe advantage of us-
ing this pick up was that it required no physical contact with the vibra-
+1ng structure whose response is being measured and its sensitivity is in-
dependent offrequengy. The output from the proximity meter was fed into ‘
the Muirhead low frequency phase meter through the tunable fllter, the :
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purpose of the tunahle filter cirenit being to select the required freq-
nency from the wave—form input. The amplitude of the response, which is
proportional to the output voltage from the pickup system, could be read
directly" from the mutti-range voltmeter fitted in the phase meter, The
oscilliscope was introduced into the cireit for monitoring the input sig-
nals before they were fed into the phase meter. The hlock diagram of the
equipment is shown in fig, (5).

Test Procedure.

The following gystematic procedure was followed for recording the
response of the frame to a sinusoidal exciting force.

1. The input current to the vibrator wes generally adjusted to a2 level
of 1,0 amp,, and this sigual was also used as a reference signal for
finding the phase difference between the displacement and the excit-
ing force.

2. The estimate of natural frequencies was first ohtained hy feeding the
response and the reference signal on to the oscilliscope until a 90°
phase difference was obtained. The frequencies corresponding to 90°
phase angle difference were defined as the natural frequencies of the
frame,

3. After the matuml frequencies of the infilled frame had heen estimat-
ed, the test was repeated, but this time by directly feeding the res-
pbnse and the reference signal to the phase meter., The amplitude and
the phase angle were measured for.a range of frequencies of excita-
tion, Initially the readings were taken at a frequengy interval ran-
ging from 5 to 2 wcles, but this interval was reduced to 0.2 gycles,
in the vicinity of the natural frequency., In the vininity of the na-
tural frequengy the phase angle and the amplitude variation becomes
very sensitive to frequency,

inalysis of EBxperimental Results

Having measured the amplitude of the response and the phase angle he-
tween the response and the reference signals 2t a point on the vibmting
structure for a range of frequencies, the results can be plotted in var-
ious ways, For illustration, the curve 4 in Fig, (6) shows the peak amp-
litude plot against the exciting frequency of a single storey, single bay
square infilled freme, The maximum amplitude occur at a frequency w =
317.8 ¢/s. The damping can be determined by finding Aw fqr which
(Rmax/R) =J2 as shown in Fig, (6). The coefficient of viscous damping is

given by

b =AV/2P

Fig, (7) represents the phase angle plot against the exciting frequ-
ency of the above gsystem, The natural frequengy, p, gan be obtained by
the intersection of the phase angle plot with the line % = 909, and is
found to be 314,4 ¢/s. The coefficient of damping can be determined from
this plot by using equation (11); if the slope of the curve at the point °
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of intersection is accurately measured.

Fig, (8) shows the vector plot around the first naturel frequency of
the above systen, The natural frequengy of the gystem is located by find-
ing the point having maximum frequency spacing around the curve.

As described earlier, the method of vector plot provides a simple
mean of finding the true peak amplitude with good accuracy, free from off-
resordnt vibration, in the resonant mode at a natural frequency. This is
done quite easily by fitting a best circle to the arc, placing particular
emphasis on the part of it around the naturel frequenay, as shown in Fig,
(8?. The point O denoted the new origin for the mode. Strictly speaking,
the maximim spacing can only he determined hy measuring the lengths corre-
sponding to small frequency interval around the natural frequency, For
the present case a frequengy intervsl of 0,2 c/s was chosen and the arc
lengths corresponding to this interval measured, The damping coefficient
has been determmined by using the expression (15). The curve B in Fig.(6)
has been plotted takihg O as the new origin of the pure mode, OH repre-
sents the true peak amplitude of the fundamental mode, and y gives the off-
resonant contribution of other modes to this true peak amplitude.

It will be seen that values of natural frequencies as determined from
vector plot and phase angle plot were same, Hence, a s discussed hefore
.the phase angle plot gives a hetter estimate of natural frequengy than the
peak amplitude plot.

Tests were carried out on two storey, three storer and four storey in-
filled frames, The vector plots for the resonance tests in three and four
storey infilled frames are shown in Fig, (9) and (10) respectively. The
curves have been plotted around first, second, third and fourth naturel
frequency of a four storey infilled frame, The curves have been plotted
to different scales of amplitudes, Best circles have been fitted to the
arcs in the immediate viecinity of the natural frequencies and resonant dia-
meter marked to indicate the points corresponding to modal naturel freque-
necies,

Tahle 1 shows the results of three and four storey infilled frames,
The experimental value of natural frequencies of four sto%':% infilled fra-
mes are compared with the theoretically calculated values ), assuming
the structure to be a bending type structure in which axial deformation of
frame members are not geglected,

Tt will be worthwhile to discuss the limitations of the technique em-
ployed for locating the natural frequency - that of finding the point hav-
ing maximum frequency spacing around the curve in the vector plot method.
Since the arc length can only be measured between tlo distinct frequencies
rather than at a particular frequency, the meximum spacing can only he de-
termined by measuring the lengths corresponding to knowh frequency inter—
vels around the naturel frequency., A&nother difficulty lies in the fact
that any errors in plotting the phase or the amplitude in the Argend dia-
gram gives rise to a greater error in measuring the spacing, It should
also be noted that the change in spacing around the natural frequency is .
due mainly to the change in the increment of phase angle corresponding to 2
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fixed frequency interval,
angle quite accurately,
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Fig. 1 (left). Peak amplitude plot

Fig. 2 (right). Phase angls plot
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Fig. 3a (left). Displacement response for constant force amplitude by Kennedy and
Pancu method
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Fig. 7 (right). Phase angle plot of square infilled frame around first natural frequency
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Fig. 9 Vector Plot of Three Storey Single
Bay Square Infilled Frame
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modzl damping of three storey and four s*mrw
single bay square infilled fraemes,

Row A gives the experimental naturel frequency

Row B gives the experimental modal damping as 0 %

Cr

Row C gives the theoretical natural frequency
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