USE OF RESONANCE METHOD IN MECHANICAL
MODELLING OF SEISMIC EFFECT ON STRUCTURES

By Sh.G.Napetvaridzel) P.A.Gubidzell)

SUMMARY

The paper presents a method by which the seismic iner-
tial load adequate stresses are determined in respect with
separate modes of natural vibrations of the model of a stru-
cture.

These vibrations are excited in the resonance regime
and the acceleration level of the model base with each mode
of vibration is determined according to the standard spect-
ral diagram of dynamic coefficient adopted in the USSR codes
of selismic design. Thus, although vibrations of the model of
a structure occur conformably to the sinusoidal law, the
test method in current use permits taking indirectly into
account of the real character of seismic ground vibrations
during. destructive earthquakes.

The paper sets forth the analytic rationale of this
- method, as well as examples of the realization of the method
as applied to arch dams.

DETERMINATION OF SEISMIC INERTIAL LOAD
ON AN ARCH DAM WITH THE AID OF THE SPECTRAL METHOD
OF THE EARTHQUAKE RESISTANCE

To simplify the exposition of the nature of the appli-
cation of the spectral method of the theory of seismic sta-
bility to the problem of designing an arch dam we consider
that the masses [[l of the arch dam weight are concentrated
along the medial surface of the dam at separate points
(descrete scheme of mass distribution).

Let such points in the dam be N < Consider now any
point K and assume that at this point the external dynamic
forceRx acts in the direction of the vector Uk of the
elastic horizontal dam displacement at the point | under
consideration.
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Resolving the elastic displacement and the external
force into a series according to matural modes of dam vibra-
tions, we can write

t)= Z/ng(t) W)
R.)= > P (t) | @

L=1
where t: is the time
L 1s the mode number of natural vibrations.

Assuming that the modes of mnatural vibrations Cp
are known, then the external load in the | th form, with
due allowance for (2), may be represented as:

Puk (t) Z Q m qux('o &)

where Gb(t) is the factor of series expansion;

LQ is the frequency of natural vibrations of the
dam in the | +th mode-.

Using the conditions of the orthogonality of natural
modes and the well-known operation connected with 1t, we

obtaln 2 )qg
: uJ t’ tuJ
OL(t‘)= iji i=1 uJ
> My,

=1

Now we turn to the expression of external force which
can also be written as follows

Ex (t) = mnwun(t’) ’

where Wux(t) is the projection of the horizontally directed
vector of the seismic acceleration of the
gtructure as a non-deforming body alo the
direction of the displacement vector lt% (b

Of the medial dam surface as an elastic body.‘

(4-)\
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It follows that

N

W, (6) =W (t) Cos (U, W) (5)

Here \N(t)is the modulus of the ground seismic acceleration
vector which is determined from the instrument
recording of earthquake (from the accelerogram) .

We denote W(t,)==W]£(t)
wmere W =|W(t)| 22 [£(t)]<1
we finally obtain

B, (t) = MW](tlcos(Uiw)

(6)

~and after substituting this value into (4), we obtain

’ 4
Uh(t) ‘—-‘——-‘J):z Wf(ﬁ) bb n
n
h VAN
where —_Z m‘jqjiuJCOS(UJ,W)
- S | (8)
2 8
Z mJCpLuJ

The differential equation of the point K motion, with
due account of (1) and %7), can be written as follows

& 2
Wb+ 52 Uil6) + U, (6) Wi=—Wj (8 b, D,
( € 13 the coefficlent of diffusion of elastic energ’y) .

The solution of this equation may be represented with
allowance for the notation

bRu=":ux | | (9

in the following iorm
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oy ; ‘58-:}‘? w; (6-%)
Ut =12 mwhjf (£) © i, (t-5)dE

o

(10)

where KC:% is the coefficlent of seismicity ;
SL i1s the logarithmic decrement of natural vibra-
tions.
As is known

b _.ég_%@b(t‘t)
Wy f(g) e &inLOL(t‘§> df = BL(t)

1s the function of the time of the coefficient of dynamic.

(11)

Thus, the dam elastic displacement and the corresponding
seismic force acting at the point K of the medial dam sur-
face, with account of (1), (10) and (11), can be written as
follows n

v=1

n (12)
Sult)=feq 2 BT,
Here CLK.—_ mK%
According to (8) and (9) 0 A
" q,PruiCesly.w)
7Lux— m L] (13)

2 CL]CDLUS

dering the mass of the dam as distributed along the medial
surface. Then, instead of (12) and (13) the following fo:
lae may Dbe used =
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O (z.v.zt)= cht(:r.\/.Z) Z ﬁt(t)Vz:u(I.\/.Z)
b=1 a4

=@, ey J q @32, @32 Ces(UW)oln

Sq(cc.u) P, (zv7) ds (15)

st

Here £, Y and Z denote the coordinates of the point con-
sidered on the medial surface;

Ci(I.Y. Z) is the dam weight per unit area of the
medial surface at the point with the
coordinates J, , Y and Z i

0[9- is the elementary area of the medial
surface.

Hence, the formulae (12),(13), (14) and (15) completely

solve the problem of determination of the geismic load on the

arch dam.

However, elimination of the time parametr T - from the
formulae (1 25 and (14) is difficult in practice. Various
methods have been proposed for the solution of this question-

The following formulae obtalned from a probability

approach to the theory of selsmic stability are recommended
by the present writers

6ui¢

—
2y

- mxx/ﬁ- 2T 2B o

-\

‘ g 2, ., ,‘
i&(;gy,z)i:}(ci(m,\!.?) (1-ZYLu(I,Y.Zi}-kZBLQN(IMZ) an

‘ being the number of natural vibration modes taken into
account and is usually sufficient for N =3 to 5.

The second external load component, normal to the force
Be®) represented by the formula (6), 1s to be considered
‘in order to have complete characterizatiomn of the seismic
inertial load acting on the concrete arch dame.

I other words, 1f D, (t) according to (6), and conse-
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quently, the seilsmic load according to (16) or (17) are nor-
mally directed at the medial dam surface, then the load com-
ponent we are interested in, will be directed tangentially
at the same surface. Thus, the tangential eomponent of the
external load may, analogously with (6), be written as
follows

A
T8} = K9, fb) Sin(Uw) .

METHOD OF MODELLING RESEARCH INTO EARTHQUAKE
RESISTANCE OF AN ARCH DAM ON A SEISMIC PLATFORM

A technique of analytic computation of seismic inertial
load acting on an arch dam w:s presented in the preceding
section of thils paper. However, practical implementation of
this method as applied to actual dams is bound with same
difficulties due to the complexity of dam design during its
space actions. Thus, estimation of the self-induced frequen-
cies (Wi and the modes (P, (T , Y , Z ) on which the
dynamic coefficients [3, and the modes of vibrations

w(T 5 ¥V, Z ) determining the normal (radial) component
of the seismic load by the formula (16) or (17) proves to be
difficult.

Furthermore, it is difficult to design the stress con-
dition of the dam, for in this account should be taken of
both the normal (radial) and tangential components of the
seismic load, the distribution regularity of which along the
medial dam surface is somewhat complex.

With the aim of overcoming these difficulties we have
recourse to modelling 1nvestigation. In this case, the most
convenient method is, of course, that with aid of which the
model will be tested on the selsmic platform capable of re-
producing real seismic vibrations of the ground, certainly
in a modelled forme It is only under this condition that we
shall arive at a direct solution of the problem of directly
measuring the state of stress of the model and consequently,
of the dam itself.

However, such a way of solving the given problem, even
at the present stage of development of technology 1s diffi-
cult, as it would be necessary to have a powerful three-com-
ponent seismic platform of preset guidance.

Therefore, proposed in this paper 1is a method of model-
ling investigation that requires for its realization a seis-
mic platform capadble of reproducing only sinusoidal vibra- -
tions to be sure with a possibility of grade change of the
frequency of platform vibrations. :
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As will be shown below, even with such restrictions of
seismic platform indices, there is full possibility of
carrying out modelling investigazions of problems of earth-
quake resistance of structures in full accordance with the
spectral approach to seismic effect, as set forth in the last
section of this paper.

A1l this is achieced by that the mode of vibrations
(¥} (z , ¥ , £ ) we are interested in, 1s reproduced in the
resbnance regime, whereas the absolute value of the amplitu-
des of vibrations of the dam in this mode is determined as
follows.

On the basis of (12) for the Ut th mode of vibrations

we can write the following formula for the elastic displace-~
ment of the model

ULK(t) = KC% é—j_?- ﬁi.@)vl:uk

or the maximum value
U, =K.q-1 y
= e =5 B,
8(*)'& Y].Lux
On the other hand, with the resonance vibrations
U* ¥ J\ Yr-
LK L 5b LuK

where #& is the amplitude of vibrations of the seismic
platform corresponding to- the resonance regime .

SL is the logarithmic decrement of the natural
vibrations of the model.
»*

From the condition U= Ui we obtain
i N
‘ Kc% (DEBL—AL-—‘.
hence

Aiz%Kc%ﬁi (19)

where (x)g is now equal to the resonance frequancy of plat-
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form vibrations. Assuming that the amplitude of platform
acceleration in the resonance regime equals W= A" in
accordance with (19) this parameter of platfbrﬁ viﬂ}ations
may also be resorted to:

¥ Si . |
W‘L"" 3-‘" Kca J3l- (20)_

The right-hand members of the equalities obtained are
assumed to be given.

Thus, the tension state of the model and hence of the
dam itself in the L +th mode of vibrations under considera-
tion will be characterized by stresses in the model measured
in the resonance regime satisfying the condition (19) or (20X
Knowing the stresses 6y (L ;Y , Z ) in separate forms the
full stress in the dam may be computed by a formula similar
to (17) and written as follows

i 6; (TY.%)

L=1
The immediate task of model investigation will thus be
solved. Tasks of methodological character are incidentally
- solved ; namely, with a view to specifying the method compu-—
tation of self-induced frequencies and modes, the latter,
being defined theoretically, may be compared with their
experimental values. Thus, natural modes are ascertained by
measuring the elastic displacements of the model in resonance
regimes, whereas self-induced frequencies will be equal to
resonance frequencies.

l 6 (:n.y,z)l-——-

On the whole, the accuracy of a theoretical determinati-
on of seismic load and the state of stress of a dam may be
verified. If we set ourselves the task of determining the
frequencles and natural vibration modes on the model, and,
approximately, of the qualitative aspect of the state of
gstress of a particular arch dam under design then a most
simple procedure of model investigation can be applied.

The question here 1s of the generation of resonance vi-
brations in the dam model hy a single powerful electro-magne-—
tic vibrator of oriented actlon, without mounting the model

on the seismic platforme.

TESTING THE MODEL WITH THE APPLICATICN OF A VIBRATOR
The possibility of the use, in principle, of vibrators

of oriented action for model investigations into seismic sta-
bility directly follows from the equation (4). Taking into.
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consideration the method for determination of seismic iner-
tial forces, and taking account of the equality of inertial
forces arising under the influence of a single vibrator fix-
ed at the point f and of the inertial forces generated
during the vibration of the model we obtain the required
value of exciting force,of the vibrator

Z mJ CpuJCOS(U:?W) .
Be)=Keg Sm— BB @
Lus

Hence, to determine the maximum amplitude of vibrator
force it is necessary to know the ordinates of the modes of
natural vibrations at the model points we are concerned with.
However, we are faced with the difficulty of designing a
vibrator of preset guidance.

In order to simplify further the solution of task in
modelling investigation of earthquake resistance of an arch
dam we assume that the vibrator is capable of generating only
sinusoidal vibrations, with a possibility of making a graded
change of amplitude of the force K¢ and of a correspon-
ding frequency of vibrations. Then, after a properly trans-
forming and satisfying therpaximum value of seismic force,

we obtain: ‘
g‘ Z mLCpLuJCOS(U;\,W)
R‘::KC% L i=1 o, ﬁi. (22)
Lu

Thus to determine the pulsating force it 1is necessary to
have the value of the lo ithmic decrement of the natural
vibrations of the model o , whereas the dynamic coefficient
will be determined by the modelling standard curve JSL .

It is seen from (22) that to obtain a moderate force
from the vibrator the latter must be fixed at the point where
the ordinate of the self-induced function Crz reaches a
maximunm . Luf

Realization of the proposed method of modelling invest-
igations in earthquake resistance of structures by a single
vibrator of oriented action is envisaged in the following
form.

By attaching the vibrator to any point of the model,
resonance vibrations are axcited, with an arbitrary exciting

force of the vobrator, and the modes of model vibrations
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are fixed with the accuracy of a constant factor.
Further, the modelled amplitude of the vibrator force is
estimated by the formula (22) and with such a force we cause
the model to produce resonance vibrations according to a
preset normal mode. Incidentally, accelerations and dynamic
stresses we are concerned with are registered by instruments.
Having found these values in separate natural modes, as in-
dicated above, the design values of seismic forces and
stresses may be ascertained, with due allowance for all the
vibration modes under consideration.

Application of the method described may be restricted
to a determination of only matural modes and vibration fre-
quencies of the model with a view to using them in an analy-
tical solution of the problem of determining the seismic
load by the formula (17).

It should be noted that the procedure of modelling in-
vestigations based on the use of a single vibrator is some-
what inferior to modelling investigations on a seismic plat-
form, for it is connected with rather laborious computation
by the formula (22). Incidentally, such computation prove to
be roughly approximate ones inasmuch as the division of the
whole mass of the model into separate concentrated masses

M; will be conditional. In spite of this, under certain
conéitions, with the aim of rapidly obtaining approximate
data cn the earthquake resistance of structures such lnves-
tigatons may prove valuable.

The results are cited below of tests of one large model
of an arch dam on the seismic plaform, and of another model
of smaller size tested with the ald of a single vibrator-.

One of the variants of the concrete arch dam 270 meters
height of the Inguril Hydroelectric Plant was adopted as the
prototype of the large model and for the small model -

— another variant of the same dam, 300 meters in height.

The scale of length of the large model was equal to
1 3 200, i.e., the height of the model was 135 cm.

A low-modulus material obtained on the basis of cement-
-gand mortar with addition of rubber crumbs, concrete stone
clay, and lead shot was used as material for this model.

The principal physical and mechanical characteristics
of this material are: modulus of elastisity - 5200 kg/sq cm,
volume weight - 3200 kg/cu m; Poisson's ratio - 0.25%.
logarithmic decrement of vibrations - 0.32.

The seismic platform on which the large model was tes-
ted involves a rigid metal-construction resting on flexible
supports (Fig.1) The working surface of the platform equals
25 sq m and its 1ifting power is 35 tons. The platform



permits testing models separately on the horizontal and ver-
tical dynamic action according to sinusoldal law. The plat-
form vibrations are excited by powerful mechanical vibrators
with maximum exciting force of 25 tons and frequency range of
6 te 50 cps.

The dam model { Fig. 2) was designed and made with due
account of the heterogeneity of the rocks of canyon edges and
according to their deformation characteristics.

The test data of the model state of stress for the sei-
smic action of 8 degree along and across the canyon, and
their values translated for the prototype, are shown in Figs.
3 and 4.

The small model of 1 s 300 scale was tested an electric
dynamic vibrator in the frequency range of 20 to 200 cps, in
order to reveal stresses and deformed states.

A low-modulus material - also on the cement-sand bgsis,
with addition of rubber crumbs and cement-stone clay, with
the modulus of elasticity of 8000 kg/sg cm and volume weight
of 1200 kg/ cu m was used as the material for this model.

The results of measurement of the model vibration'modes
are shown in Fig.5.
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Fig‘ . Generdl View of the Seismic Flalform
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