STRUCTURAL DYNAMICS OF CANTILEVER-TYPE BUILDINGS

John A. Blume(I)

SYNOPSIS

8tructural and dymamic properties of buildings vary with the ratio
of the stiffness of the horizontal to the vertical members and elements.
Many contemporary buildings bave low ratios, and perform more as canti-
levers than as frames. Cantilever-type buildings are investigated over
the entire range of relative stiffnesses. Traditional design methods
may result in serious inadequacies. A Modified Cantilever Method is pro-
posed to determine rapidly the natural periods of buildings having little
moment restraint from the floor systems. Useful concepts and structural-
dynamlic date are provided for cantilever-type buildings, which type has
been subject to severe earthquake damage in Chile, Anchorage and Caracas.

GLOSSARY OF TERMS

A_ = effective shear area = gross area/q; 1n°

D = Jlateral flexural deflection of top of bullding loaded
laterally with its own weight; inches

D = lateral shear deflection of top of building loaded laterally-
with 1ts own weight; inches

E = the effective dynamic modulus of elasticity; kip/ in®
= total height of building, inches '

I = moment of iﬁertia about the axis normal to the plane of
loading; in

L = the member span, center to center of intersecting members;
L' = the clear menber span; inches

M = moment; in-kips (For 2 M see equation 3)

ORM = the overall resisting moment provided by axial forces in
the vertical members; in-kips

OM = overturning moment, or cantilever moment, due to lateral
forces; In-~kips

T = natural period of mode 1; sec
W = total weight of the building; kips

(2,3,5)

o = factor for effective shear area based upon the shape;
dimensionless ‘

B, = nratio of period i computed with tapered flexural stiffness
to that computed with average stiffness; dimensionless
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A = ratio of period computed rigorously &s & lumped mass system
to period by equation 11; dimensionless

P = index of joint rotation, or the ratio of horizontal member
stiffness to vertical member stiffness at the midheight
story (see equation 1)

p = p when clear spans are used as per equation 2
the summation symbol

i

P = ratio of period for a pure cantilever (p = O) computed as
lumped massed system to the period computed as a uniform bar

Subscripts

a,b,c refer to case (a), (b), or (c¢) in Figure 1k

£ refers to flexure

B refers to shear

c refers to colum, or to vertical member or assembly
G refers to girder, or to horizontal member or assembly

INTRODUCTION

There are important reasons for considering cantilever-type build-
ings, including the fact that many contemporary buildings tend to respond
to ground motion more as a system of slightly restrained vertical ele-
ments than as traditional rigid fremes. Another reason is that buildings
with spandrel or girder damage or hinging tend to function as pseudo
cantilevers in subsequent earthquake response.(l) In addition, much can
be learned about building dynamics including important new parameters and
time-saving methods of analysis.

Whether or not a building tends to perform as a rigid frame, as a
vertical cantilever, or as some combination of the two depends upon the
relative stiffness and strength of the horizontal and the vertical ele-
ments. The horizontal elements may be beams, girders, joists, spandrels,
floor slabs, or various combinations. The vertical elements may be
columns, piers, pilasters, walls, core units (such as around stairwells
and elevator shafts), or various combinations. The tendency in recent
years has been to make the horizontal elements much less rigid than the
vertical elements. This changes or negates much in accepted structural
design practice and certain concepts regarding dynamic properties of
buildings. Damage in recent earthquakes indicates that design practices
must be improved for cantilever-type bulldings or for structures that
might become cantilever-type during earthquakes.



BASIC TERMS AND SYMBOLS

A paper by Jacobsen in 1939(2) provided excellent data on distributed
mass models of buildings which are constructed essentially of solid walls.
These might be termed pure cantilever buildings, the limiting case in a
whole spectrum of cantilever types in current building configurations. The
other end of the spectrum is the traditional rigid frame building with
deep spandrels or girders, often with stiffnesses equal to or greater than
column stiffnesses. Stiffness is defined as the ratio EI/L for each
member, under the assumption herein that the members remain normal to each
other at the joints. For simplicity, E can be assumed constant for a
building, either because there is only one material or because the analyst
can use transformed areas with a single modulus of elasticity. It is
necessary to have a simple index to define the degree of horizontal to
vertical stiffness in a building. As previously proposed 3,4) 1et

0 I (1)
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> Y
L
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The summations are taken for all members in the midheight story. If
the girders or columns change in that story, average values from the ad-
Jacent stories are used. Stiffness ratios vary with helght, although not
to a great degree in most cases, especially in cantilever-type buildings.
p 1s very easy to obtain and is a most useful index in this problem. If
a wall should be solid, or have only insignificent openings, and be the
only vertical resisting element, p would not exist and can be considered
a8 zero. This would be a pure cantilever, However, if there should be
some horizontal (floor) framing either between walls in the direction
under consideration or elsewhere in the story, the numerator would exist
and p would have a value other than zero, even though very small. p is
always computed for the entire story including all members in that story.

Figure 1 indicates some partial building elevations together with
approximate p~-values based upon arbitrary assumptions as to the wildths
(normal to the elevation) of the horizontal and vertical members shown.
Elevation (e) represents failed spandrel sections, and (f) represents a
contemporary building of wall sections and flat slab floors.

In computing p, the height of the columms, walls, or piers would
normally be taken as the full story height floor to floor, and the length
of the horizontal elements, center to center of the vertical elements.

In a few cases, the walls are punctured with openings of such size as to
create ghort spans for which shear deformations would be significant. In
such cases, clear spans would be used in equation 2.
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p=-values were computed for many rigid frames and real buildings,(3)
and rigorous analyses were conducted with the aid of computer facilitiles
to obtain the relationship of structurel and dynsmic characteristics to g
and other parameters. Buildings may be generally classified as shear,
shear-freme, cantilever-frame, framed cantilever, or cantilever daﬁending
upon p (or p') values and related characteristics. Another puper( ) bhas
presented the effects of joint rotation, overall flexure and base compli~
ance for the shear and shear-frame categories, which may generally be
considered to have p-values greater than 0.10. This paper is concerned
with the three cantilever types of buildings with p-values generally less
than 0.10. It also discusses another type of building, the braced frame.

A basic concept in structural engineering is that the algebralc sum
of the moments of all forces in a system in equilibrium must be zero, and
all points in the system must have a set of forces and stresses that
satisfy this law as well as the requirement for the algebralc sum of the
forces along each axis to equal zero. The relative amount of moment
resistance of any type in a building frame varies as f varies. At any
horizontal plane including the base of the building

OTM + ORM + LM = O (3)

In this equation, clockwlse rotation is considered positive. All moments
must, of course, be in consistent units. With this equation it is ap~
parent that for a pure cantilever, ORM would be zero and therefore 2o M =
~-0TM. Yor a rigid frame or for a combination of framing and walls, pilers
and/or core units ~- given a disphregm rigid in its own plane ~- there

- will be both ORM and 2 M. The relative amount of each -~ and therefore

the shears in the girders and the axial forces in the columms -- will vary
1f p varies.

ANALYSIS OF CANTILEVER-TYPE FRAMES

Various cantilever-type frames were analyzed rigorously under static
lateral forces to obtain moments, shears, and axial forces, and also
natural periods and mode shapes. In some cases girder stiffnesses were
varied to obtain various p-values and in other cases column stiffnesses
were varied. TFigure 2 shows an 8-story frame used for 22 runs with vari-
ous combinations of column areas and moments of inertia. Figure 3 is a
16-story frame also computed for 22 columm conditions. For these models
the colum properties were assumed constant from top to bottom and for all
colums in each run. Column widths were assumed to be 14 inches parallel
to the loading. p-valués for each frame were varied from 1.50 to 0.000L.
For each value, columns were alternately allowed to deform axially (column
"shortening") in overall flexure, and not to deform axially. E was taken
as 30,00Q kip/in®.
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Structural Variations with p. Figures 4 and 5 show the relation~
ship of p and 2 M for frames having various values of p, for the 8 and
16-story models. It is apparent that approximate methods of analysis
which assume points of inflection at midheight of columms, or even some-
where in the lower story, are quite erroneous for p-values somewhat less
than 0.10. Lower, and upper, story moments can be much greater than
indicated by approximate methods of riglid freme analysis, as has been
previously noted. 1,6:7§ This is a very important polnt for builldings
with long spans or relatively flexible floor systems; especially in the
lower and in the upper stories.

Figure 6 shows the axial force in the exterior column solely from
lateral forces for various stories of the 8-story frames. It is to be
noted that the lower story is sensitive to p changes even at high values
while the other stories (except the second) have essentially constent
column axial forces until p becomes less than about 0.0l. Below this
value the structure is approaching the pure cantilever condition and the
column axial forces therefore approach zero. Figure T shows similar data
for the 16-story frames. The results are similar. :

Figure 8 shows the shear in the exterior girder for various floors
of the 8-story frames and Figure 9 for the l6-story frames. The lower
levels are the most sensitive to p-values over the whole range. TFigures
6, 7, 8, and 9 are each for the cases in which the columns are allowed to
deform axially. Some of the local variations are due to frame geometry
effects such as flexural rotation of the colums distorting girders.

Figure 10 indicates fhe ratio of the moment resisted by flexure,thL
to the overturning moment, at the base for various p-values. From equa~
tion 3, using absolute values for convenience,

ORM ZM

o o | (4)
The values 20 M/OTM are plotted directly in Figure 10, and ORM/OTM may be
scaled between the curves and the ratio value of 1.00. Data are shown
for the base levels of the 8-story and the 16-story frame. These curves,
or similar curves for other structures more representative for specific
problems, are useful for various purposes including the consideration of
the effects of possible p variations during earthquakes. If the girders
should hinge, p would decrease and thus increase the flexural moment
demands on the columms or piers while the axial forces, per se, in the
vertical members would decrease. On the other hand, if the columns should |
hinge before the girders, p would increase and the cqQlumms would have less
flexural moment with increased axial forces to develop the necessary RM
values. The relative hazards of one type of failure over another would
depend on the particular interaction characteristics of the column section
and the numerical values of moment and axial forces.

= 1.00 -

Dynamic Variations with p. The ratios of natural periods, T./T, and
T /T3, vary with p as shown in Figure 11. It is apparent that fof the
véry~low p-velues the system is approaching the classical ratios of 6.27
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and 17.6 for uniform cantilever bars in flexure. For high p-values the
ratios are approaching the shear bar values of 3 and 5. Joint rotation
1s reduced with high p-values indicating greater relative girder stiff-
ness; thus story "shear' predominates.(3,4) On the other hand, for
builldings with p-values much less than unity the shear building concept
(8,9) without correction (3,4,10) involves serious error in period
determinations. ’

Figure 11 indicates the categories of buildings associated with the
relative stiffness of the horizontal and the vertical elements. In the
upper range where the curves are almost vertical there is the "shear"
building. Immediately below this is the "shear-frame" building in which
Joint rotation plays an important part. In the next range, f{lexure and
shear are both important and there may be no points of inflection in the
columns of the lower story or two. This range is designated herein as
the "cantilever frame". With lower p-values, overall flexure tends to
dominate and there may be no colummn inflection points in many of the lower
stories, This 1s termed here the "framed cantilever" range. Finally, at
very low values of p, the bullding may be considered a cantilever for most
purposes. The divisions between these categories are arbitrary and must
be considered as subject to variation, and overlapping, depending upon the
particular matter of interest. The popular but misleading term "shear
wall"” has no relationship to these categories. On the contrary, a build-
ing with "shear" walls with or without a frame will have low p-values and
will tend to be a cantilever-type wherein flexure will often dominate over

" i

shear per se. The "p" approach is general.

Only the shear building is subject to analysis by popular, approxi-
mate dynamic or static methods. For all others, joint rotation and over-
all flexure are significant or dominant, and points of column moment
inflection may be far from the positions indicated by approximate frame
analysls procedures. The dynamic characteristics of bullding types 1 and
2 have been covered in a separate paper.(“) The other three types are
considered herein.

The mode shapes also vary with p as shown in Figure 12 for the funda-
mental and the second modes of the 1l6-story frame. The low p-values indi-
cate flexural performance. The second mode nodal point is much higher
with the low p-values and the fundamental mode shape is curved from the
vertical position as shown. It has been found, however, that a highly
tapered shear stiffness from top to bottom can also produce a mode shape
as shown (for the low p-values) even in pure shear.(3) Thus a so-called
"flexural” curvature of a building may or may not represent dominant
overall flexure and low p-values. The p-value, however, is a real indi-
cator of the relative importance of shear and flexure. The participation
factors for top story deflection (6) are also shown in Figure 12. There
is considerable variation with the p-value.

Error in Approximate Methods of Frame Analysis. The technical liter-
ature and most textbooks on structural frame analysis contain considerable
data on various approximate methods of stress analysis of rigid frames for
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buildings. Probably the most popular for several decades have been the
"Portal Method" and the "Cantilever Method", although there are many
others. Most of these methods are based upon assumptions as to the
locations of points of inflection in girders and colums and/or as to
shear distribution or axial forces in the columns. Enough assumptions
are made to make indeterminate structures subject to analysis by ordi-
nary equations of equilibrium. These methods have been and still are
widely used in building design.

In most cases with traditional type buildings oxr buildings of the
shear or shear-frame types -- in other words, buildings with p-values
greater than say 0.10 -- the results obtained are satisfactory. However,
with low p-values the results can be seriously in error and dangerous in
design as indicated in Figures 4 and 5 where the points of inflection may
. not exist at all in many stories. This phenomenon, which has been re-
ported previously,(6) occurs in cantilever-type buildings. Low p-values
exist where the spans are long and/or the floor systems are shallow,
where planned vertical structural members such as core units, walls,
piers or massive columns dominate the response, or where non-structural
filler walls or partitions are placed in a bullding in such mamner as to
dominate the response, at least until damage occurs and possibly allows
the frame to act somewhat as the designer intended. However, girder
hinging in earthquakes can also cause low p-values and cantilever-type
response. (1)

Cantilever-type buildings must be treated as such and either be
anslyzed by rigorous methods or with proper allowances for the nature of
the cantilever-type system. This becomes very important in not only de-
sign but in the analysis of existing buildings for resistance to ground
motion.

Table I is a comparison of shears, axial forces and moments for the
lower stories of the exterior column of the building frame of Figure 2,
loaded as shown. The values have been computed by the Portal Method, the
Cantilever Method (which bears no relationship to the cantilever consid-
erations of this paper), and by rigorous methods with computer aid. Only
the lateral forces of Figure 2 are considered in this analysis. The low
p-velue column shears are greater than the approximate methods suggest,
the axial forces are less, and the column moments are much greater. It
would seem that cantilever-type bulldings designed under traditionel ap-
proximate methods can be grossly overstressed, and have been in recent
destructive earthquakes. If this overstressing occurs with structures
not designed to be ductile,(6) failure can be expected.

PERIOD DETERMINATIONS

Natural periods of any category of buildings may be computed by the
lumped mass analogy, providing the computations are conducted rigorously
and the effects of colum or pier width and joint rotation are carefully
considered. So-called "shear" methods are not appropriate for any but
the shear category in Figure 11. The lumped mass computation may involve
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considereble, and sometimes unnecessary, labor for cantilever-type build-
ings. Even with digital computers it is necessary to prepare data cards
for all members.

Pure Cantilevers. If p-values are zero or very close to zero, the
structure can be considered a pure cantilever system, and the periods can
be readily computed by hand methods. (2,3) The building may consist of
several vertical cantilever walls or elements or it may be a single tube
or hollow rectangle. The assumption mey usually be made that the total
mass, shear area, and moment of inertia are uniformly distributed over the
height as outlined by Jacobsen. (2) For a pure cantilever with a fixed

base

T, = 0.288 J/ D, , sec (5)

Tps = T3 (6)

TBS = Tls/s (T)

T = 0.258 / D, , sec (8)

Top = ‘l'lf/6.27 (9)

Typ = Tlf/l’{..6 (10)
2 2

Tisfz is * Tif (11)
WH

Ds = OBaAE (12)

v
b, - g - A2, (13)
£ EL (10) 1

The above equations are shown for the case of a single vertical ele-
ment, which may be of any shape. If there should be two or more vertical
elements without significant connection between them so that they would
bend individuslly (i.e., develop no significant shear between them due to
flexure) and if they participate in parallel, then the sum of their indi-
vidual Ay and I values would be used in the above equations for A, and I
respectively. However, if individual vertical elements have sufficient
connecting elements to develop flexural shear for the levels of stress
involved, then the gross I value for the composite elements would be
employed. In this sense the term gross I includes the Ad® contribution
of the combined elements about their common neutral axis. There may be
such combined elements in a buillding together with many individual ele-
ments, as for example internal core-wall units and individual bullding
columns. The determination of the effective I value thus requires con-
siderable judgment. Each case must be considered on its own merits. The
decision -- often a difficult one -- must be made whether the analysis
is approximate or rigorous.

The periods of several real cantilever buildings were computed as
above and the results compared to known measured periods with good agree-
ment, as shown in Table II. The low p~values are due to stiff wall
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elements and/or flexible floor systems. There are many buildings with
such characteristics. The ones shown in Teble II are privately owned
and are therefore not identified herein.

Most bulldings of the cantilever-type are dominated by vertical
walls, plers or core elements that do not tend to vary greatly with
height in the building. Thus the assumption of uniform properties is
generally acceptable. This may be checked and, if necessary, corrections
made by reference to Figure 15 and equation 14. '

The Modified Cantilever Method (MCM). In order to explore the
effects of moment restraint on the natural periods of framed-cantilever,
cantilever-frame,and cantilever buildings, the 8-story and the 16-story
frame bullding models were used as follows. The lowest three natural
periods and mode shapes were computed rigorously as lumped mass models
with a wide range of p-velues. In addition, the periods were computed by
equations 8, 9, 10 and 13, ignoring the slight restraint of the relatively
flexible girder systems. Shear was also consldered but it was found to
be negligible.

Ti computed rigorously as a lumped mass system
Let )‘i = -

jof PY equation 11 (or its equivalent)

Figure 13 shows the values of A, versus p for the lowest three modes of
both the 8 and the 16-story fraies. Some Ay values are greater than
unity. This illustrates a condition that holds for all values, nemely
that a lumped mass system has different characteristics than a uniformly
distributed system. Of course, as the number of masses increases the
period ratios would approach unity.

A separate investigation was made as to the difference in periods
between a uniform rod in pure flexure and for that same rod modeled by N
equal lumped masses with the masses equally spaced starting at the top of
the rod. The latter case, of course, simulates the lumping of a typical
building. A building per se is neither a distributed rod nor a lumped
system; it falls between these limits. There are several ways to conduct
the computations for the lumped mass system representing the rod. Three
were employed: (a) rigorous computation, (b) rigorous determination of
Dy as a lumped mass system followed by the use of equations 8, 9 and 10
to get the periods, and (c) determination of story deformations as a
flexural rod followed by period computation with lumped masses. The case
(v) method gives periods slightly shorter than the rigorous method for a
small number of masses. However, this difference is reduced as the number
of masses increases. The only difference between procedures (a) and (b)
is the assumption about mass distribution in getting the periods from
known deformations. The results for all three methods are shown in Figure
14, The values are independent of the mode, i. The ratios shown in
Figure 14, case (a) computation represent the asymptotic \ values as p
approaches 0. TFor example, the 8-story values, for all modes, would ap-
proach 1.12, and the 16-story values would approach 1.06.
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The 8-story aund 16-story frames used for a major part of this ostudy
were assigned uniform column moments of inertia -- for each p-value --
over the height of the ‘tructure. Since these colums actually represent
the core, pier or wall-t rpe members that are usually dominant and essen-
tially uniform in low p-value structures, this assumption best simulates
real cantilever-type builcings. The Modified Cantilever Method (MCM)
utilizes the midheight characteristic of p, I, and Ay and simulates most
real structures with very low p-values. If I should vary or taper consid-
erably with height, corrections can be applied based upon the results of
a study of the stiffness taper parameter. Most tall bulldings have ec-
sentially uniform weight distribution with height even if the stififness
varies. The reason is that there arec many more significant weight contri-
butions than those of the structural menmbers. The assumption of uniform
weight distribution -~ barring setbacks, of course -~ is therefore re-
ta‘ricd. Very little has been done with the case of variable stiftness
and uniform mass. However, Salvadori and Heer provided useful constants
for cantilevers of constant mass and linearly varying flexural stiffness.
(11) Their data were employed herein in a study that compared the periods
of tapered stiffness flexural cantilevers to the periods computed as uni-
form stiffness cantilevers of average moment of inertia. With the
assumption of linearly varying moment of inertia, the midheight value of
I is the same as the average value.

Firsire 15 summarizes the results of the tapered stiffness study and
provides convenient correction factors, 84, for the first three modes of
v.oration. The ratio of the true tapered-stiftness period to the period
computed on the basis of assumed uniform moment of inertia, g4, is plotted
against the taper ratlo, defined as the moment of inertia at the top of
the building divided by that at the base. Assumptions are that I varies
linearly and the mass is uniform. Only flexurc is considered. 3y is very
close to unity and therefore negligible for the second and third modes
except for very hiphly tapered stiftnesses. The first mode is more sen-
sitive and 31 becomes important for taper ratios less than, say, 0.490.

It has been shown(3,4) that for tall buildings with p-values such as
to indicate the shear or shear-frame types (sec Figure 11) colum axial
deformation -- often termed column "shortening" -- may be significant in
period determination and in stress analysis. "This effect was also inves-
tigated for low p-value building frames. As may be expected, the effect
of axial deformation becomes less with decreasing p-values. It essen-
tially vanishes if p is less than 0.0l and is generally negligible for

p-values less than 0.10. This effect is therefore negligible for canti-
lever-type buildings.

The Modified Cantilever Method (MCM) provides for the computation of
approximate tall-bullding periods by the simple methods normally used for

cantilever beams. It applies to buildings of the cantilever, framed-
cantilever, or cantilever-frame types having low p-values.

)
T, = ) X ) N
N (Tige) (1)) ‘(‘Pa) (B,) (14)
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The values of Ti ¢ are computed with equation 11 (or if shear is negli-
gible, with equations 8, 9, and 10); )\, data are obtained from Figure

13 or an equivalent figure; @x/ma data " from Figure ;h; and B4 data from
Figure 15. In the above, ¢, refers to case (a%, (b) or (c) in Figure 1bk.

- Example of MCM. Find the natural periods of a 16-story building
haging p = 0.005 and Ty, = 3.00 sec. (Shear is negligible.) Assume case
(v) of Figure 14 is appropriate, and that the ratio of Itop/Ibase = 0.6.

From‘Figure'lB, A

1-1,2,3 = 0.40, 0.68, 0.88

From Figure 1k, mb/@a = 1.04/1.06

From Figure 15, B, _ = 0.93, 0.96, 0.99
i=1,2,3

Using equations 1k, 9, and 10 as appropriate:

T, = (3.00) (0.k0) (1.04/1.06) (0.93) =1.09 sec
T, .= (3.00/6.27) (0768) (1.04/1.06) (0.96) = 0.31 sec
T3 = (3.00/17.6) (0.88) (1.04/1.06) (0.99) = 0.15 sec

BRACED FRAMES AND FILLER WALLS

Some buildings have diagonal braces that considerably alter the
response characteristics from those of rigid frames. If all panels are
braced, axial stresses dominate and the structure becomes very rigid.

The moment taken by the individual columns is greatly reduced and there-
fore the overall resisting moment is increased. If the braces are suf-
ficiently strong and rigid, the entire frame performs as a unit cantilever
menber. It develops essentially all of the overturning moment (orM) as
though p were zero and the diagonal braces were merely internal shear dis-
tributors for the overall cantilever unit.

Diagonal struts were added to the frames of Figures 2 and 3. They
were each assigned pinned ends so as to develop no moment. The brace
areas were constant at 20 square inches. Two rigld frame systems were
employed, one with p = 0.10 and the other with p = 1.00. These frames
with the struts were then subjected to analysis. In some of the runs,
the braces were omitted from the lowest story to simunlate certain types
of bulldings.: Table III gives some of the results obtained.

The stiffnesses of the frames are greatly increased with the bracing.
Assigning an arbitrary stiffness of 1 to the non-braced frame, the stiff-
nesses at the top level are 7.7 and 34.1 for the p = 0.10 frames with the
partial, and the full bracing, respectively. The bracing tends to domi-
nate the characteristics and therefore the response to ground motion.

Let it now be assumed that the strut braces with pin ends simlate
filler walls that offer compression value across the diagonals, that is
until such time as the walls crack from tension normal to the compression
dlagonals. ' The great importance of these walls is apparent. For practical
purposes if walls exist in all panels the structure tends to respond as a
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cantilever with p = O. The difference in rigidity is so great, at all
levels, that any other frames in the bullding without waells become
relatively ineffective. The bullding becomes essentially a cantilever-
type structure and should be treated as one in design and analysis.

The case with walls (braces) in all but the lowest story is inter-
esting in that the first-story columms must resist shear, axial force
and moment not only from the one frame (as shown in Table III) but addi-
tional amounts from any other non-walled frames in the building systenm.
Moreover, the periods are reduced and therefore the response pattern is
altered. Filler walls can not safely be ignored. It is also to be noted
that when braces or walls occur in all but the lowest story, the overall
building can be modeled reasonably well as a single degree of freedom
system.

SUMMARY AND CONCLUSIONS

Many contemporary bulldings have much greater stiffness in the
vertical members than in the horizontel framing and tend to respond more
as cantlilevers than as conventional frames. An easily determined index,
p , is provided to classify framed buildings into five basic types and
to determine whether or not there are cantilever tendencies. The three
cantilever types -~ the camtilever-frame, the framed-cantilever, and the
cantilever -- may be analyzed by the Modified Cantilever Method proposed
herein. Correction factors are provided as part of the Modified Canti-
lever Method for the moment restraint of flexible floor systems, for vari-
ations between lumped mass and distributed mass systems, and for tapered
stiffness cantilevers as compared to uniform cantilevers.

The use of traditional aspproximate methods of structural frame
analysis can be seriously in error and lead to dangerous buildings if the
building systems have low p-values and tend to respond as cantilever sys-
tems. Diagonal braces and filler walls also tend to create cantilever-
type systems that may respond and be stressed in a much different manner
than the designer or amalyst would normally assume. Much earthquake
damage in the last decade can be ascribed to cantilever-type bulldings

that were not treated as such in design, as well as to lack of designed
ductility.
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