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SYNOPSIS

This paper is concerned with the earthquake analysis of suspension bridges,
in which the effects of large deflections are taken into account. The first
part of the study deals with an iteration scheme for the nonlinear static
analysis of suspension bridges by means of tangent stiffness matrices. The
concept of tangent stiffness matrix is then introduced in the frequency
equation governing the free vibration of the system. At any equilibrium stage,
the vibrations are assumed to take place tangent te the curve representing the
force-deflection characteristics of the structure.

The bridge is idealized as a three dimensional lumped mass system and
subjected to three orthogonal components of earthquake ground motion produc-—
ing horizontal, vertical and torsional oscillations. By this means a real-
istic appraisal is achieved for torsional response as well as for the other
types of vibration. The modal response spectrum technique is applied to eval-
uate the seismic loading for the combination of these vibrations. Various
numerical examples are introduced in order to demonstrate the method of
analysis. The procedure described enables the designer to evaluate the non-
linear dynamic response of suspension bridges in a systematic manner.

1. GENERAL

" 1.1 Introduction:= The suspension bridge is a highly nonlinear three dim-
ensional structure. As a consequence, in dynamic studies the governing non-
linear equations of motion are frequently simplified by introducing assumptions
which linéarize these equations™. - These simplifying assumptions may however
be avoided, and the nonlinear behaviour of the structure may thereby be taken
into account in both static and dynamic analyses, by using an iterative
solution employing tangent stiffness matrices. The iterative scheme has béen
applied previously by a number of authors in connection with the static anal-
ysis of suspension bridges2,3,4. 1In this paper the same operation is extended
to solve the dynamic response problem of suspension bridges, which are ideal-
ized as three dimensional lumped mass systems vibrating due to earthquake
ground motions. Only geometric nonlinearity is considered; the material is
assumed to remain elastic. .

The method proposed for the nonlirear vibration analysis of suspension
‘bridges involves two distinct steps, which are summarized as follows: '
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(1) Under the static action of the dead and live loads the equilibrium
configuration and the internal stress resultants of all constituent elements
of the structure are first determined through an iteration routine based on
the Newton-Raphson method.

(2) The vibration of any point in the bridge, with respect to the static
equilibrium position, is assumed to take place along the tangent to the curve
defining the force-deflection characteristics of that point. The natural
frequencies and mode shapes of the structure are obtained from a solution of
the eigenvalue problem in which the frequency determinant is expressed in
terms of the tangent stiffness matrix of the system. Once these fundamental
dynamic properties are determined, the response spectrum concept can be used
in conjunction with classical modal analysis to evaluate the seismic forces
acting on suspension bridges during earthquakes.

" Details of these two basic steps are given in the following sections.

2. METHOD OF ANALYSIS

2.1 Determination of the Equilibrium Configuration:- For the purpose of
clarity, the method of analysis presented in this paper is introduced by
referance to the simple nonlinear system shown in Fig.l. A schematic illus-
tration of the iteration process used to obtain the static equilibrium
geometry of this example structure is given in Fig.2. The following steps
are involved:

(1) A linear stiffness analysis is performed under the action of the
given external load, Py = P, yielding the straight line Ga. The slope of
this line, K;, is equal to the stiffness of the system in the unloaded
position. The joint displacement, Dy, obtained from this first linear cycle
of analysis is largér than the equilibrium displacement, Degq.

(i1) The internal stress resultants of each member are calculated on
the basis of the deformed geometry D of the system using the nonlinear
expressions given in Appendix I. The resultant of the first cycle internal
forces, P14, is not in equilibrium with the given external load, as shown
in Fig.2. The unbalanced joint load, P,, is

Py = Py TR &

(i1i) In order to eliminate P, the displacement D; must be diminished.
This is accomplished by loading the joint with a force Py, applied in the
direction of the resultant internal joint load Pyy, and performing a second
linear stiffness analysis of the structure under the action of P,. During
this step the original stiffness Kj is replaced by a tangent sti%fness, Ko,
which depends on the loaded and unloaded member lengths and also on their
end deformations and stress resultants in the previous cycle (see Appendix I).
The force-deflection characteristic of the strugture is now represented by
the straight line bc,having slope K; and leadimg to a cycle displacement D,
which reduces the initial displacement and brings the system closer to the
actual equilibrium configuration. :
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‘(1v) With repeated application of steps (ii) and- (iii) the
unbalanced joint load is continuously diminished, as may be seen in Fig.2.
The tangent stiffness matrix is successively altered after each cycle so as
to include the latest geometry and internal stress resultants of the system.
At the end of any jth cycle the unbalanced joint load is

Pyl =By ~ P ’ (@

and the total joint dispiacement, D e is equal to the algebraic sum of
the individual cycle displacements gr

Djt = Dl + D2 + ... Dj (3)

The iterative process is repeated until the unbalanced joint load 1is
reduced to some acceptable value.

The above ijterative scheme has been applied to the system shown in
Fig.l, and the numerical results of each cycle are tabulated in Fig.3.
Although seven cycles were required to reach an exact solution, the error
in the deflection after the fourth cycle was only 1.6%.

2.2 Equilibrium Configurations for Suspension Bridges:- The preceding
approach for establishing the equilibrium .geometry of nonlinear structures
is perfectly general and can be applied without variation to more complic-
ated structures providing that the unbalanced loads are eliminated in every
direction at every joint.

However, in the case of suspension bridges the entire dead load is
carried by the hangers and main cable only. The stiffening girder is
assumed to be unstressed and the towers, which carry only axial load, do not
bend under dead load condition. Therefore, the geometry of the suspension
bridge available to the designer is usually the dead load equilibrium
geometry, and the unloaded lengths of the cables and hangers are unknownm.
Since these unloaded lengths appear in the tangent stiffness matrices, it is
necessary to calculate them before establishing any subsequent geometric con-
figuration as a result of added live loads. The unloaded geometry may be
determined from a single cycle of linear analysis under the action of the
known dead loads. The unloaded member lengths, L,, may be obtained from
Hooke's Law as

L = L/(1 - Q/AE) (%)

where L = the member length in the known dead load equilibrium configuratiom,
AE the axial rigidity of the member and Q = the member axial force due to
dead loads.

With the application of live load the originally unstressed stiffening
girder participates in the overall behaviour of the bridge, which subsequently

acquires a new equilibrium geometry, as illustrated in Fig.4. It should be
noted that since the stiffening girder is not stressed under the dead load

condition, the unloaded lengths of the members in the girder are available
from the known dead load geometry.
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The number of iteration cycles needed to establish the equilibrium
configuration is obviously dependent on the degrece of nonlinearity and on
the desired accuracy. In most studies of actual suspension bridges under-
taken by the writers, four to six cycles were sufficient to eliminate the
unbalanced joint loads to within an accuracy of about 0.3% of the maximum
internal stress resultant.

2.3 Frequency Analysis using Tangent Stiffness Matrices:- The dynamic
analysis of discrete mass structures is a topic which has received exten-
sive treatment in the literature and is well known®>6,7, The nonlinear
behaviour of suspension bridges during vibration about any static equil-
ibrium configuration may be accounted for by replacing the linear stiffness
matrix of the system, [KJ, by a tangent stiffness matrix,[KT]. This is
equlvalent to assuming that at any equilibrium stage the vibration of any
point in the bridge takes place along the tangent to the curve representing
the force-deflection characteristics of the point. This idea of tangential
vibration is illustrated in Fig.5. Accordingly, the frequency determinant
becomes

. Det = 0 (5)

[k - o [u]

where, M = mass matrix, and w = the natural frequency of the system in any
one of its normal modes. {Kf] depends on the strains and the internal forces
developed in the members at the static equilibrium position. The eigenvalues,
w, as well as the eigenvectors, can be obtained from a solution of Eq.5 using
routine computer programs.

The concept of tangential vibration can be simply illustrated by applic-
ation to the single degree of freedom suspended system shown in Fig.6. This
structure is considered to be vibrating freely about static equilibrium
Position 3, corresponding to some dead and live load combination. The dynamic
displacement of the system from the equilibrium position is defined by z,
measured positive downward. This deformation is represented by Position 4.
Then, in accordance with D'Alembert's principle, from Fig.éc,

X

W-—- F - AF = 0 (6)

From statics, the resultant of the cable forces, F, is equal and opposite to
the sum of the dead and live loads, W. When the system is translated by the
amount z into Position 4 the resultant of the cable forces is increased by
an increment AF, in order to maintain equilibrium. This increment is simply
the product of the tangent stiffness of the cables, Ky, and the displacement
z. That is, :

i

AF = KTz )

where K. is defined as the force required to deform the structure through a
unit vertical displacement, measured with respect to the dead plus live load
equilibrium geometry under consideration. With the substitution of F = W,

m = W/g and AF = K.z, Eq.6 is reduced to

mz + KTz = 0 - (8)
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The response of linear multidegree of freedom systems can be described
in terms of a combination of a number of equivalent single degree of freedom
systems whose behaviours are governed by a set of independent equations of
the above form. For the nonlinear system, in which tangential vibrations are
contemplated, the dynamic response can be obtained therefore by direct applic-
ation of the standard modal superposition technique, once the nonlinearity of
the structure has been taken into account inside the stiffness matrix and
Eq.5 has been solved. The modal superposition approach has been applied to
suspension bridges previouslyl’g, but the nonlinearity of the structure was
not taken into account inside the stiffness matrix.

3. APPLICATIONS

3.1 Idealization of Suspension Bridges:- Depending on the memory capacity
of the computer available, the suspension bridge may be idealized as a plane
or space frame composed of a series of straight line elements. While the
plane frame idealization may be used for the study of the response to vertical
and longltudlnal ground motions, the three dlmen51onal ideallzatlon is desir-
able for a realistic investigation of ‘the torsional ‘and horizontal vibrations !
of thg~gg£§_ggg_gg_ground notion,pgxngnd;gglar to the deck centerline. Ideal-
ized forms for typical tower, stiffening truss,'éébles, hangers and bridge
deck components of a suspension bridge are shown in Fiz.7; when assembled

they form a three dimensional lumped mass system.

The main cable and hangers are considered as pure axial force members
of constant cross-section, while the stiffening girder is assumed to be com-
posed of beam-column elements between hangers. Loads are considered to act
at the nodal points only. Since the stiffness matrix approach is quite general,
it is not necessary to resort to any other simplifying assumptions. The influ-
ence of hanger extensions, cable point loads, degree of fixity at the tower
base, continuity of the stiffening truss across the towers, and variations in
moments of inertia can easily be taken into account.

In the case of a three dimensional idealization, .all three rotations
and the horizontal translations perpendicular to the bridge centerline must
be suppressed at the cable-hanger junctions in order to prevent singularity
in the stiffness matrix. This reduces the total number of degrees of freedom
of the system. If necessary, to fit the capacity of the computer, this number
may be further reduced by neglecting the axial length changes and the torsional
rigidities of the flexural members.

3.2 Primary and Secondary Degrees of Freedom:- The joints of a vibrating
structure normally have more. degrees of freedom than the number of directions
in which the lumped masses are considered to vibrate. For example, the
lumped masses are not considered to vibrate in the rotational degrees of free-
dom. To'distinguish between the vibrating and non—vibratlng directions the
degrees of freedom are classified into two groups:

(i) Primary degrees of freedom (P), which refer to the.vibration
directions of the lumped masses.
(ii) Secondary degrees of-freedom (S), which refer to the directions
along which no vibrations take place. The secondary degrees of freedom only
contribute to the stiffness of.tha system.
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The master stiffness matrix generated for the system contains both
primary and secondary degrees of freedom and is therefore of higher order
than the mass matrix of Eq.5. In order to make the matrices compatible,
the secondary degrees of freedom are eliminated by means of a matrix part-
itioning process 1,

3.3 Types of Vibration:- An earthquake. may excite a suspension bridge in
any one or a combination of the following three types of vibration:

(A) Torsional vibration of the bridge deck, coupled with a lateral
vibration of the towers, due to horizontal ground motion perpendicular to the
centerline of the bridge. The torsional vibration is essentially a combin-~
ation of the vertical and lateral motion of the bridge deck. Such vibration
may also be developed due to lateral wind loading.

(B) Vertical vibration of the bridge deck, coupled with a horizontal
vibration of the towers, due to horizontal ground motion parallel to the
centerline of the bridge.

(¢) Vertical vibration of the bridge deck, coupled with a horizontal
vibration of the towers, due to vertical ground motiom.

In all cases, vertical vibration of the towers and also longitudinal vibration
of the bridge deck may be neplected, since their effects are relatively small.

These three types of vibration should be taken into account when perform-
ing an earthquake analysis of suspension bridges. Different aspects of this
problem have been discussed in the literature by various authors12.13,

4. NUMERICAL EXAMPLES

The procedures discussed in the preceding section are now demonstrated
by application to two example structures.

The idealized N-S component of the 1940 El Centro earthquake spectrumd
was used in the dynamic analysis of both structures; the spectrum values
were multiplied by two-thirds when considering vertical excitation. The bridges
were considered to have about 1% of critical damping in all modes, and the
tower and anchorage supports were assumed to be subjected to the same ground
motion. - Computations were performed with the IBM 7044 at the Computing Centre
at the University of British Columbia. Although the capacity of the program
was sufficient to handle full scale suspension bridges, smaller hypothetical
structures were selected for sake of simplicity and clarity of presentation.
4.1 Example 1l:~ A hypothetical suspension bridge was idealized as the two
dimensional lumped mass system shown in Fig.8 and subjected to vertical ground
motion only. The member properties of the bridge are summarized in Table 1.
As discussed in Section 3.3, this excitation produced vertical vibration of
the deck and horizontal vibration of the towers. The primary and secondary
degrees of freedom corresponding to the vertical ground motion are also shown
in Fig.8 for a typical cable, girder and tower joint.

(1) See, for example, Rcference 7, p.44.
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The static equilibrium position about which the bridge was assumed to
vibrate was taken as the dead, plus one-half live load configuration, which
was established by the iteration scheme outlined in sections 2.1 and 2.2.
The mode shapes and natural periods for the first ten modes of vibration
are given in Fig.9. '

4.2 Example 2:- In order to obtain a realistic appraisal of the dynamic
response of suspension bridges, especially towards lateral ground motion,

a three dimensional idealization of the structure is desirable. For this
purpose, the centre span of the preceding example was idealized into the
twenty eight lumped mass system shown in Fig.10. The member properties are
listed in Table 2. The bridge was subjected, non-concurrently, to the three
types of vibration described in Section 3.3. The geometry supplied in

Fig.1l0 was assumed to be the equilibrium geometry about which the vibration
occurred.

The primary and secondary degrees of freedom of typical joints in the
case of ground motion perpendicular to the bridge centerline are shown in
Fig.10; the lumped masses of the bridge deck were assumed to have both vertical
and horizontal motions, allowing the investigation of torsional vibrations.

The mode shapes, natural periods and participation factors for the first
ten modes of vibration, corresponding to the Type A vibration of Section 3.3,
are given in Fig.ll. The mode shapes of Types B and C vibration are of the
same form as those shown with the preceding example, Fig.9. Modes 6 and 8
indicate the presence of a torsional oscillation of the bridge deck. This
potentially destructive vibratiorn, which has caused suspension bridge failures,
emphasizes the usefulness of the three dimensional idealization. Only two of
the first ten modes of vibration were of a torsional character. It is poss-
ible that higher torsional modes would have a significant influence on the
maximum response,

The inertia forces corresponding to each of the three types of ground
motion considered acting independently are tabulated in Table 3.

4.3 Dynamic Response Due to Combination of Ground Motions:- The maximum
dynamic response of a suspension bridge may be developed by an earthquake
ground motion which produces concurrently the three types of vibration mentioned
in Section 3.3. This maximum response may be estimated by a suitable combin-
ation of the inertia forces obtained from non-current analyses. For this
purpose, the shears, moments, axial forces and deflections, etc., in the
structure are first determined separately for each mode of each type of
vibration by considering the respective modal inertia forces to be acting stat-
ically and performing a nonlinear analysis using the iteration method outlined
in Section 2.1. The root mean square combination of these modal values con-
stitute the desired maximum dynamic response.

5. CONCLUDING REMARKS

1. The concept of tangent stiffness matrix,used in conjunction with the
standard modal superposition method, provides a systematic approach to the
nonlinear dynamic analysis of suspension bridges.
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2. For a realistic evaluation of the overall dynamic response of a
suspension bridge, a three dimensional idealization is desirable. Such an
idealization permits a study of the torsional oscillation of the bridge
deck. 1In fact, significant vibratjons of this type were observed due to
earthquake ground motion perpendicular to the bridge centerline.

3. The general procedures described in this paper may supply useful
information in the study of the aerodynamics of suspension bridges.
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APPENDIX I

1.1 The member end forces, fj, f, ... fg, of a plane frame based on the
deformed geometry (Fig.l2) may be written as follows4:

/ \

in which AE = the axial rigid{ty,

£,] ( (L, - 1) AE/L )
fz (f3 + f6)/L '

! !3 (. | (4EI/L) (63 + 8) 1 + (2E1/L) (66 + 9) s,
£, -(L, - L) AE/L,

f5 —(f3 + f6)/L

\f6 (4E1/L) (66 + 8) sy + (2EI/L) (63 + 9) SZJ'

A.l

EI = the flexural figidity, Ly = un-

loaded length, L = loaded length in the last cycle, 6 = additional end
rotation at each end of a member due to unequal lateral end displacements

given by

sin 8 = (&

(55)/Lo

81> 52

= the stability correction factors9

For flexural members in compression:

51

2 =P (p-sin p)/2 (2 - 2 cos p - p sin p)

For flexural members in tension:

= (sin p - p cos p)/4(2 - 2 cos p - p sin p)

1= P (p cosh p.= sinh p) /4(2 - 2 cosh p + p sinh p)

%2
p =1L \/(L0 - L) AE/L,EIL

= p (sinh p - p)/2(2 - 2 cosh p + p sinh p)

A.2

A.3

A.4

A.5

A.6

A7

1.2 The tangent stiffness matrix of an axial force member in space 110,11

[x}- £

T2 i
tm m Symme tric
fn m n2
-22 -gm fn 22 -3
~%mm -m2 -mn m m?
‘ Lfln ~mn fnz in mn n{
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[ 1-02

~2m 1-m?

-n% -mn  1-n2
22-1 2m & 1-22
m{ m2-1 mn  -ml
nk m  n2-1 -n%

- 2
~mn 1 “J

Symmefric

1-m2
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in which, %, m, n are the direction cosines of the member centerline and
Q is the axial force, compressive positive, given by

Q = AE(L, - L)/L, A9
The tangent stiffness matrix for a plane flexural member is3,ll

r . . Py . .
Seg +D - - -Sp_ - -Smn+ -
8,403, Smn D]S Cir\ql Sgl DJl Smn DJS Cjnql

Smn—Dj2 Sg2+Dj6 Cimql —Smn+Dj2 -ng—Dj6 ijql

33 G Aysp o Gy €437 Bs,
[ s 05, -smens. Sg.+Dj. Smm-Dj. C.n A.10
8,703y Tomatlig Lynqy  Sg TRy, SmATRg o Ry
«Smn+DJZ -ng—Djé —Cimq1 Smn--Dj2 Sg2+DJ6 --ijql
—-Cj_‘)4 ijﬁ B62 ij4 —CjJS Ajs1
- Ixvz
(6 x 6)
in which
(A, = A, = 2B = 8EI/L
1 J
C,=C, = 6EI/L2 N A1l
¢ 1 ]
D = 12EF/L3
S = AE/L
- Ly,
= — - 2
B " o~ (1-nd) ) *
4 A.12
Ly .
= — . 1._n2)
& I, (
f 2 A
ji ql(n - wmn) is i,
{ j, = q ltmn—-w(m2 - nz)/Z] ie = 9 (m2 + wmn) A.13
2 1
Lj3 = J4 =nq; ' jyg = Jg=mq
d = + 6
ST T 1 | | A.14
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FIG. 8.—IDEALIZED SUSPENSION BRIDGE, EXAMPLE I.
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FIG. 10. — IDEALIZED SUSPENSION BRIDGE, EXAMPLE 2.
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Mowent
. of
MEMBER NO. Inertia Areca Length
(in.%) (in.2) (fr.)
1 8000 50 10
2 8000 50 10
3 7000 45 5
Tower 4 6000 40 5
5 5000 35 10
6 4000 30 10
7 3000 25 10
Stiffening Girder 2000 30.0 As shown
Cable 0 1.00 in
Hangers 0 0.79 Fig. 8.

TABLE 1. - MCMBER PROPERTIES OF EXAMPLE 1, E = 30 x 1061b/sq.in

Moments of Inertia .
max. min. 1 torsional Area
Ga.b) G| nb_ ||
Tower legs 5414.3 406.91 12.15 42.68
Tower top beam 69.2 8.5 0 5.88
Tower bracing 98.0 98.0 0 16.73
Edge Longitudinals 3635.3 254.0 8.84 35.29
Intermal longitudinals 1042.6 87.5 5.08 22.92
Transversals 248.6 53.2 1.53 13.24 .
Cables 0 0 0 1.00
Hangers 0 0 0 0.79
TABLE 2. - MEMBER PROPLRTIES OF EXAMPLE 2,E = 30 x 1061b/aq.1n.
)
» » BRIDGE DECK MODAL SEXSMIC INERTIA FORCES (kipas)
J oA w
o & Ba
=| 3 &
E “ K.
g =215 |1 2 3 4 s 6 7 8 9 10
3] 45 | A 9.6(0 0 9.6 (0 ] 0 o Q o
4| 45 | A 15.5(0 o ~5.710 0 o Q [ [}
6] 435 | A [} 18.2 0 4] 32.31 0 [} 0 ]
B 18.1 {0 [} 32.6 |0 0 -3.0 |0 Q0 -1.0
c 12.1] 0 0 21.7 |0 0 -2.0 10 0 [-0.7
1] 45 | A 0olo 13.7 ] (] 8.0 0 0 8.6 [
B 13.710 ] 8.0 |0 0 A0 O 0 |-0.1
c 9.1} 0 0 5.310 0 2.7 10 [ ]
8] 45 | A 0o 39.1 (o] 0- |-l4.2 | 0 0 0 [}
B 39.210 [} -14.2 {0 0 -7.6 |0 ] 0.6
c 26.210 o -9.5 |0 o ~5.0{0 G 0.4
91 45 | A [ Jl.6| ~0.1 {0 -4.4 | 0 a ] ]
B 3L.7{0 0 ~4.4 {0 0 9.4 10 ¢ [-0.2
c 21.110 0 ~3.0(0 0 6.2 0 0 |-0.1
* A = llorizontal Ground NMotion Perpendicular to bridge axis
B = llorizontal Cround Motion Parallel to bridge axis
C = Vertlcal Ground Hotlon
*® For mocfon nuubers sec Fig.10; for mode shapes of Type A
vibration sce Fig.ll.
For all types of ground motion, the towcrs are assumed not
to vibrate.
No motion {s consldered to take place {n motion directions 3 and
4 (F1g.10), due to ground vibratlons of Type B and C.

TALLE 3. -
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SEISMLC INERTIA FORCES, EXAMPLE 2.




