ESTIMATING NATURAL FREQUENCIES AND MODES OF ARCH DAMS WITH
THE THEORY OF PLATES ON ELASTIC FOUNDATION

by

Rudolph Szilard, Dr. Ing.(I)

SYNOPSIS

The complex partial differential equation of the free vibration of
thin arch dams is reduced to that of a plate on elastic foundation. By an
extension of the variational method, the natural frequencies pertinent to
the first (symmetrical) and to the second (antisymmetrical) modes are ob-
tained in closed forms. These modes are represented as the products of
the deflection functions of equivalent beams on elastic foundation. A
numerical example based on the dimensions of an actual arch dam, for which
measured natural frequencies and pertinent modes of free vibration are
available, illustrates the feasibility and accuracy of the method
introduced. . -

INTRODUCTION

In the design of thin arch dams located in seismicly active zones, it
is mandatory to include the effects of a strong motion earthquake. The
dynamic response of any structure to seismic excitations depends to a con-
siderable degree on its structural-dynamical characteristics, which can be
best given in the form of natural frequencies. Furthermore, a number of
currently used approaches to aseismic design of arch dams(ls involve the
response spectra method, which also requires the determination of the
natural frequencies. While the use of finite difference or finite element
methods(2) are highly recommended for the final static and dynamic
analyses, they are less suited for the first appraisal of the dynamical
characteristics of various alternative designs because of the rather
‘extensive computational effort required.(3) In addition, it is always
‘recomnended to ascertain the results of a computerized solution by means
of independent checks. Consequently,.the objective of this paper is to
develop a relatively simple method of estimating the required natural
frequencies pertinent to the first (symmetrical) and to the second (anti-
symmetrical) modes with reasonable accuracy. To achieve this purpose, the
rigorous theory of the free vibration of thin arch dams has been consider-
ably simplified. The simplifying assumptions used in this study have been
introduced after a careful determination of their effects. Because of the
space limitations, these comparative studies are not discussed here, but
the obtainable accuracy is demonstrated by comparing the results of the
proposed method with actual measurements.

(I)Professor of Civil Engineering, University of Hawaii, Homolulu, Hawaii,
U.S.A. e '
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THE DIFFERENTIAL EQUATIONS OF FREE VIBRATION

Agglying the rigorous bending theory of double curved thin shells,
Ganev derived the differential equation of equilibrium, which includes
the effect of the varying curvature and thickness in both directions.
Substituting the inertia forces for the lateral forces, the differential
equation of free, undamped vibration of thin arch dams becomes
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where Vz is the two-dimensional Laplacian operator, w(x,y,t) is the time-
dependent lateral deflection, ky and k the curvatures in the X and Y
direction, respectively. Furthermore
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and E is the modulus of elasticity, V is the Poisson's ratio, m represents
the mass of the dam per unit area. The other notations are listed in
Figure 1, The validity of Eq. (1) is limited to dams with ratio of wall
thickness to radius less than 0,20.

The differential equation of motion of a plate of conmstant thickness
lying on a "Winkler~type" elastic foundation can be written as(3)

4 2
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where c is the;?bedding" constant.
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A comparison between Eqs. (1) and (3) shows that they are basically
of the same structure. - Thus, utilizing the analogy which exisgts between
~ shallow shells and.plates on elastic foundations ( a considerably
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 simplified form of the differential equation of free vibration is
obtained- :
, ’ 5 )
22 +2vk‘2k2)D+k]w+fﬁ-a—~ﬂ=0. (4)
X 'y 1 ‘ acz :

In Eq. (4) a conmstant, "equivalent". shell thickness 1is assumed.

b
‘V +[(k y

‘Comparative studies indicated that, for arch dams of-the type under
consideration, the governing term in the expression within brackets in
Eq. (4) is k, and the contribution of the other terms, for an approximate
analysis, is of negligible order of magnitude. Therefore, Eq. (4) can be
given in the form of

L 2 1
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Although is is a greatly simplified equation it contains all essential
terms and is capable (as.it will be shown later) of describing the free
vibration of thin arch dams effectively.

1APPLrCATION OF A VARTATIONAL METHOD

The irregular boundary of an arch dam makes the use of an approximate
' or numerical method in the solution of the simplified differential
equation of free vibration(3) mandatory. The general variational method
of Vlasov, developed initially for cylindrical and prismatic shells(5
has been extended in this paper to obtain the required natural frequencies.

In essence, the variational method applied to a static problem states
that the sum of the work performed by the external and internal forces is
zero. To express the total work, the differential equation of the equili-
brium is used instead of actually determining the potential energy. In
the case of free vibration the lateral force is the inertia force pg=imw.

Censidering Eq. (5) ‘and a small, virtual displacement dw, the basic
variational equation is ' :

ff(Dv2V2w+ kpw+ @) 6w dxdy = 0. L (8

In this equation the intergration is over the whole area of the dam
surface,

Let us express the lateral displacements w(x,y,t) as the product of
three,functions each of which depends on a single argument '

Wiy, 0= WAt ¥y o), ‘ m

where W is the amplitude of the free vibration, ®(x) and W(y) are orthogO*
nal shape functions representing the pertinent modes in polynomial forms, -
while O(t) describes the time dependency of the displacements. Assuming a
harmonic type motion, Eq. (7) can be written as ;
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wix,y,t)= W $(x) W(y) sin wt, . (8)

where W is the circular frequency of the free vibration pertinent to the
mode given by the shape functions.

Expressing the arbitrary variation of’tﬁe'displacement function by
Sw =CW &(x) ¥(y) sin wt ‘ (9)

and subgtituting this'exﬁressioh along with Eq. (7) into Eq. (6), we
obtain (after canceling the trigonometric term) the following equation:

”{DEW(‘I’""(x)‘Y(y) + 20" Y (¥) + Y T(y)] +
+ Gy - )w¢(x)W(y)}5w@(x)W(y)dxdy -0, Qo

where primes and dots indicate differentiation with respect to x and ¥
respectively.

Using the arithmetic mean values of D, & and kl; Eq. (10) yields
k

[DH IR (y) + 20" )Y (y) + GOV (y) 18 (x) ¥ () dxdy
NI A , : (11)
. m - mvff»¢ (x)w (y)dxdy
A

which represents the general expression of the circular frequencies.

Provided that the shape functions are known, the solution of the.
required circular frequencies has been reduced to the evaluation of
definite integrals, which can be obtained numerically. In many cases,
howeyer, it is possible to use an equivalent rectangular plate on elastic
foundation, as shown in Figure 1, which permits the analytical determina-
tion of the definite integrals in Eq. (11).

SELECTION OF PROPER SHAPE FUNCTIONS

The obtainable accuracy of the above described variational approach
depends to a considerable degree on the proper choice of the two orthogo-
nal shape functions ¥(x) and ¥(y) used in Eq. (7). Vibration studies of
arch dams(6)(7) indicate that the first and second modes have a consider-
able gimilarity with the elastic lines of finite and infinite beams on

‘elastic foundation subjected to symmetrical and antisymmetrical lateral

loadings representing the translational inertia forces. While the
boundary conditions of the finite beams on elastic foundation rigorously
satisfy the statical and geometrical boundary conditions of the actual:
dam, the infinitely long beams on elastic foundation can approximate the
actual boundary conditions quite closely, The hydrodynamic mass partici-
pating in the vibration due to the inherent complexity of the problem are
not considered in this approximate analysis.

 ,3) First Mode

The two orthogonal shape functions pertinent to the first mode of

f;free vibration are obtained using the deflection line of a finite beam
"“E(Fig. 2a) or an infinite beam on elastic foundation (Fig. 2b) and that of
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a cantilever beam on elastic foundation (Fig. 2c) subjected to uniformly
distributed loads(8), Although the thickness of the dam varies in both
directions, comparative studies have indicated that the use of an "arith~
metic mean thickness' yields a fairly close solution for the deflections.

1f the length of the arch dam at the crest is approximately 1.57/), the
deflection curve of the uniformly loaded finite beam on elastic foundation
with fixed boundary condition can be used for the shape function in the X
direction. The 'characdtéristic lemgth", A,-of the arch dam is

g _‘
A= W | “ | : 12)
Thus, we can write(II)
1 X _ _ ’
o (x) =1-% [sl + 52] , | (13)
“where, after introduction of ‘ '
Ly L, ' -
£ = l(—i +x) and & = X(—E - x) (14)
the individual expreséioﬁs are:
R = ginh XLx + sin XL#; 8, = sinh Ecos E'r{ cosh Esiﬁ E'
82 = sinh E'cos £ + cos E‘sin E. | . (15)

The selected shape function in the Y direction is

’Yl(y) -1 - ﬁ'(Césh ALyMl ~ cos ALygz), 4 : V (16)
where 2 9 ' : .
‘N = cosh XLy + cos ALy; Ml‘; sinh n'sin n + cosh p'cos g
M, = sinh nsin n' - cosh necos n' (;7)*
and o ’ .
n =2y ' =MLy -y (18)

The above given shape function can also be used when a substitute
structure, in the form of an equivalent rectangular plate on elastic
foundation, is introduced provided that Ly S'1.5m/A. In most of the
cases, the developed elevation of an arch dam is of a trapezoidal shape
which can be transformed into an equivalent rectangular plate of the
following dimensions (Fig, 1):

a
Lx .‘3.(231 + a2).3 +a ‘
L (19)
L, = H -,2%(a2“a ) 1f 2L al > 0.5 d
ajtaz) ‘

(II)l/k14 cancels out from the second term of (11)
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If the length of the arch dam at the crest is considerably larger than
1.5m/)\, the recommended shape function in the X direction is

Q'(x)'=;L e-kx (cos'kx +sin Ax); x20 - (20)

which corresponds to the deflection curve of an infinitely long beam on-
elastic foundation(

b) Second Mode

Similarly, the two orthogonal shape functions describing the. second
mode of vibration are obtained using the deflection lines of the same type
of beams on elastic foundation but now sgubjected to an antisymmetric
uniformly distributed load as.shown in Figure 2a. The pertinent shape

functions are: .
1,

: 1 1 < < x
_Qz(x) =z (AF, + BF2~— Zfa) for 0 = x =3
L (21)
-1 , 1 = > X
Qz(x) = —[4 + (A 1 + B 2 - zﬁ%)].for 08&x = -3
where
' 1rl 1 2 1
A= £ (£ - £ f4] B = £, - 7(1-£ )¢, ]
e | (22)
ag .f1f4 —.f2f3
and Lx }
fl = cosh XE— cos XE“
1, Lx Lx Lx Lx
f‘2 ='§(cosh ki— sin XE— + sinh XE— cos XE—)
£, = 2sinh )\f-’-‘;‘ i AL—" ST .
373 o B ) ;
N "i‘l | Lx‘ Ly Ly Ly
| fz = z{cosh kif‘sin XE* - ginh ki— cos XE—).
Using'Eq.v(i4).the additional constants can be given in the following
formss: . . - ’ ‘ - -
s Fy --% sinh Efsinif; Fy = gosh £'cos E'
i!Fz,n-% (cosh E'sin E' ~ sinh E'cos E')
ﬁa -'iﬂSinh Esin &; \fs = cosh Ecos §
, 1 .

o 502- Z(cbsh Eein & - sinh Ecos &)..

‘e hape function in the Y direction is.1dentical to the one used for the
_Tde, thus, W (y) =Y, (y)
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EVALUATION OF THE DEFINITE INTEGRALS

Assuming that the actual form of the arch dam permits the use of an
equivalent rectangular plate as shown in Figure 1, the definite integrals
indicated in Eq. (11) can be evaluated analytically. For this purpose,
Bq. (11) can be written as

I,1, + 21,1 +II

D R B N | (25)
L :
where _
Il - ;[0 (bl dx = L R (ZCl -——R——) , : (26)
3 c , ‘
1 " evee !_‘2\_ —z_ . '
I, = i: ¥ Y dy - e (G - )} _ @n
0 - ‘
Xl ) .
I, - | ¢, "0 dx = =, (C, + cs) - (28)
X, R
I Afl\r"\r-d =220, + 3, + ¢ )] | ‘ (29)
4 o 197 " § L8 TN T 10
0 ,
X1 - 4)«3 C2+C3 : v
= un = L. o —
I, ;(‘ 9, "0 dx = == (G =) (30)
0 |
C | ,
Ig = I L, - 5 ~ , .
6 '1!1 24y = L, - (26, - 59+ | (31)

The constants R and N in these expressions are given in Eqs. (15) and (17),~v

respectively The other constants are:

= 2(§osh le - cos‘ALx); c, = Z{Bsinh ZXLX - sin 2XLx)

1 2
C, = 2(2kaainh AL sin AL + 2cosh XLxsin AL, ~ 3sinb lecus XLx).
C, = -2\L_cosh AL cos AL_ f 2cosh ALysin AL_ + cos AL _sinh ALx,
. ' i
1
C 2(4)\Lx + sin 2)\Lx - ginh 2ALx)
‘C6 = ginh AL_cosh AL_ + sin AL_cos AL
y y y y o
C, = %{coshsz (81n2\L_+3s1nh2)L_)+2coshAL_cosAL_(2AL_coshAL_cosAL +3f2f
_ y y oy y vy Ty Yy
i o, .
+coshAL_sin)L_+sinh)\L AL )+c
y v gir ycos y) os‘ALy(SsinZALy+sinh2kLy)]
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C, = coéh AL sin AL - sinh AL cos AL
8 - y y y y

C. = L(cosh®)L - ¢0s2AL ) (4\L. + sin 2)\L_+ sinh 2AL )
9 4 y oy y . y y

Clo- cosh XLycoa XLy(ZXLysinh XLyain XLy - CB)' (32)

SimIlarly, the circular trequency pertinent to the gecond mode of
vibration is obtained from

: I I + 2L, I, + I I
w?=L[k +p-L2 81‘ cy (33)
2 m-1 ; '
; 7 6
where the newly introduced definite integrals are:
L )
+ =
2 C ,
- __’i
2
L
+ =
2 2rl '
= " o
I ] szpz 9,dx = 2) [—5013 + 014] | (35)
-2
o |
4 .
- "o = -
I, f 1:2 ¢,dx = -23"[c ; + 4c12] (36)
-7
The new constants appearing in these equations represent
, ‘ 1
€, = AGy + BG, - 7C;; Ci5 = AG; + BC, + G,
o cyy = AZe 2 + 2mBa,6 +32G -Yuc.c, + 806, - 16,%
; 12 3 4 4 27713 1 4 871
= A2 2 1,2,
Cl4 A G1G3 + AB(G G4 + G2G3) + B G,G, + A(G3 ch ) +
+ B(G4G, - G,) - 1 3 (37)
" The coefficients A and B are defined in Eq. (22). . Furthermore,
ok L L L L
& VG )\ (sinh)t——cos)r- + coshk**-ain)\——)
g S L L -L
=—5\- (ainh}\-z—-sinki—) H G4 41 (1-coshl-2°‘cos)r—-)
1 Lx : I‘x Lx Lx ~
—H(c*oshl-z—sin)\-z-- - sinh)\_-f-cos)t-z-—)i n : | (38)
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NUMERICAL EXAMPLE

In order to prove the feasibility of the method introduced and to
obtain information concerning the accuracy of the solution, the natural
frequencies pertinent to the first and second modes of the Monticello
Dam?s) have been computed and compared with the actual frequencies
measured by the Bureau of Reclamation, Denver, Colorado. The average
dimensions of the Monticello Dam are shown in Figure 3. The units ft, lb
and sec have been used in all numerical computations.

The substitution of these values into Eq. (2) glves

3 o
‘D = 2,99+-144 32 - l.966°1012 o= Osé?nﬁz) = 1.5
12(1-0.17%) . :
0~ 13 2.9:10% 144738 4 2
ﬁt = 59§~7Z——-= 0 ky= = 3 = 4,78+10" and fi=1,72+10
m 470%¢1.5
From Eqs. (2), (12) we obtain:
. 4 7
: 4
1 =12 38% = 4.57-20° and A AJ 4.78 ;0 5 = 8.88+10™>
' - 44,18+10%¢4.57+10

The dimensions of the "equivalent" rectangular plate on elastic
_foundation are (13):

_ 20, 990 o " op _ 990(990-495) 4
L = 3[2 495+990]495+990 880 and Ly 220 6(9901495) = 165.

The constants required for evaluation of the definite integrals
I.-1.2. ¢ are calculated from Egs. (15), (17) and (32), respectively:
plv o ‘ : ”

N = 5.16; R = 1221
2.28+10°; Cy = 1.057+10%; ¢

= 2.04; C

6

i

¢, = 2440; ¢, 4 = ~1.52410%; Cg = 17.12;

= 4.74; C, = 18.4; C = 19.8; C. . = 0,950 °

- % 7 8 9 10
Substituting these quantities into the expressions of the definite inte—
~ grals given in Eqs. (26) to (31), we obtain: ‘
L= 603; I,= 6.34-10~7;‘ I, = ~9.06-1073;

, -6
15. 1.292:10 ~; Ig = 36.2,
Using Eq. (25), we can write

2 .
Cowt e —2— 478 10 4
| 1.712 10

1 = 1.4°1072

L

12 | - . _ |
+1.96 107" 603x6.34+107742(-9.06-10x1.4+2072) 41, 292410 6x36. 2
603%36.2 2]

. 2
= 3.74°10" and w = 19.34 rad/sec,
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from which the natural frequency of the dam is -

w'l934_
f = i 3.08 cps.
A comparison of this computed fréquency with the measured one indicates
an error of 1.6 percent. In view of the introduced simplifying assump-
tions, however, such a high accuracy should be considered as a coincidence
and not a rule.

The natural frequency pertinent to the second mode was obtained from
Eq. (33) in a similar manner. The discrepancy between the estimated and
measured natural frequencies was below 1 percent., The measured and
estimated first and second modes of free vibration are illustrated in
Figure 4:

. CONCLUSIONS AND RECOMMENDATIONS

It has been demonstrated that it is possible to reduce the inherently
complex problem of free vibration of thin arch dams to that of an equiva-
lent plate or elastic foundation. Closed form solutions for estimating
the natural frequencies pertinent to the first and second modes of free
vibration have been derived which yield numerical results in a relatively
short time. The validity of the closed form solution is limited to
"equivalent" crest length Ly £ 1.5m/A, provided that the developed
elevation is of .a trapezoidal form which can be transformed into equiva-
lent rectangular plate on elastic foundation. Altheugh an excellent
agreement between calculated and measured frequencies has been obtained,
the obtainable accuracy is estimated to be between 10 and 15 percent. More
arch dams for which measured or calculated data on free vibration 1is
available will be investigated using the method presented. The results of
these studies witl be reported orally at the 4WCEE in Santiago.

For arch dams which do not satisfy the above mentioned limitation, a
general expression has been derived requiring numerical evaluation of
certain definite integrals. It is possible, however, to obtain closed
form solutions for arch dams of trapezoidal and triangular shapes also.

For final design, when high accuracy is mandatory, the use of an
improved finite difference technique for solution of t?e rigorous differ-
‘ential equation of motion (1) is highly recommended (1
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