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SYNOPSIS

Presented is an approximeste method of determining the peak seismic re-
sponse of certain irregularly shaped buildings when subjected to base
accelerations corresponding to the N-S component of the El Centro 1940
earthquaeke. This method is based on the forced response of two degree of
freedom systems and is applied to the lateral motion of buildings having
large set-backs and to the coupled lateral-torsional motion of eccentric
buildings. Response spectra for a two degree of freedom system are in-
cluded to facilitate the use of this method. A comparison of the results
is mede with an sccuraste solution end s more approximate solution using
single degree response spectra. The conditions under which buildings
demonstrate asbnormael response are discussed and recommendations are made
for svoiding such undesirsble cheracteristics.

INTRODUCTION

One of the most significant contributions to the enalysis of structur-
al response during ?n earthqueke has been the introduction of the concept
of response spectra l). These spectre for a specific earthquake make it
possible to immediately determine the maximum.response of an elastic single
degree of freedom system to that earthqueke. Thus, earthquake response
spectra provide a direct means of determining the maeximum elastic response
of 8 multi-story building in any one of its netursl or normal modes of
vibration. ’

Maximum response due to 8ll modes of vibration is often obtalined by
an approximate method of taking t?e square root of the sum of the squares
of individuel modal contributions 2). This method is ressonable in most
cases provided the natural frequencies of the contributing modes are fairly
well spread. However, in those cases where two of the mejor contributing
modes have frequencies close together, this method leads to large errors,
particularly when damping is smell. Unfortunately, irregulerly shaped
buildings mey have two contributing mode shapes with frequencies of nearly
the seme magnitude. Therefore, it is importent to understend the response
characteristice of such systems when subjected to earthquake excitation.

The abnormal behavior caused by the close freguencies of cirtﬁin
types of structures has already been reported in the literature 3, ’5).
It is the purpose of this paper to show that the mathematical models of
these special structures are identicel ad that the method of enalysis
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previously reported by J. Penzien and A Chopra for appendage response(3)
is appliceble in each csase.

APPROXIMATE METHODS OF ANALYSIS

A, Latersl Motion of Bulldings Having Lsrge Set-Backs

1. Two-degree of freedom analysis - The mass of the set-back portionof
e building as shown in Fig. la can, in some cases, be small compared with the
mass of the lower portion of the building which supports it., In such cases
the set-back portion scts like an appendage with its fundamental mode re-
sponse during an earthquake being controlled primarily by the response of
the main building. This condition suggests that one could determine the
seismic response of the set-back portion (or of an appendage) approximately
using & separate two-degree of freedom system for each of the lower normal
modes of the building (without set-back structure) as represented in :
Fig. 1b. The terms M,, K;, end Cn in this figure represent the generalized
mass, generalized spring constant and generalized damping factor, reapec-
tively, for the nth lateral vibration mode of the building (without set-
back structure) while the terms mgy, kg, 8nd cg represent the corresponding
quantities for the fundamental mode of vibration of the set-back structure.
These generalized quentities are given by the relations

M
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- where ®4n 1s the dimensionless mode shape quentity st the locetion of

lumped mass my (L =1,2,...,N) due to the nth mode of the main building

“itself without the set-back structure, «, is the corresponding nth mode

frequency, £, is the damping ratio for the nth mode, ®j, is the dimension-
less mode shape quantity at the loestion of lumped msss my (1 =1, 2y.4a, s)
due to the fundsmental mode of the set-back structure by itself, w, 1s the
corresponding frequency, and &, is the demping retio of the fundamental
mode.,

The two degree system of Fig. 1b is excited through 1its support by
the motion Ug(t) which 1s related to the ground motion U (t) by the
relstion

Us(*‘) | Z m, 8, / my m] U (t) = -y U (%) (3)

The constent quantity yp in the brackets of Eq. (3) is & participation
factor defined so that the resulting support displacement time history
Ug(t), 1f applied to the generalized single degree system representing the
nth mode of the bullding (with set-back structure removed) will produce a
displacement time history of mass M, identicel to the nth mode displacement
time history of the top of the main building, 1.e. st the location of the
set-back.
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Using Egs. (1), (2), and (3), and introducing a mass ratio B, = my/My,
the coupled equations of motion for the two degree of freedom system shown
in Fig. 1b may be expressed as

Ll 2 » : . z ’ e
+ - X)) - x) = -
Xtk X o X - B ot (X-X)-Ba (X xn) 7’nUg(t)

X, * 2w, (5, K) + @] (%) = 7,0, (5) R O

The above coupled equations of motion can be solved numerically(é) for any
prescribed ground acceleration U,(t) and for any set of parameters wy, Wy,
€ns Ea» Pn, and 7 to yield the §es1red seismic coefficient Cy, for the
gset-back portion of the building which is defined as

Can (ah’ ©g? gn’ ga’ Bn’ 7n) = I(Xa_Xn) Oy ///g I max. (5)

This seismic coefficient is simply the ratio of the maximum dynamic shear
developed at the location of the set back to the static shear developed at
this same location due to a 1lg lateral loading.

After obtaining Cgp for n = 1,2,...,r, the combined seismic coefficient
Cg for the fundamental mode response of the set-back, including the first r
modal contributions of the main building, can be obtained using the approxi-
mate relation

- 2 2,1/2
c, = (Ca.1‘+ Cop * vee * car) (6)

Usually, only the first 2 or 3 modes of the main building need be considered
in evaluating Ca5 i.e., r can be set equal to 2 or 3.

2. Single-degree of freedom analysis - For easy application of the
previously described two degree of freedom analysis, it is necessary that
response spectra for the two degree of freedom system be available. Since
response spectra are readily available for the single degree system, one
might consider reducing the two degree of freedom system of Fig. 1b to
two generalized single degree of freedom systems representing its first and
gsecond modes of vibration. The meximum response of the system in’'each of
these two modes can, of course, be obtained directly using the single degree
resporise spectrum corresponding to the prescribed ground motion. Hopefully,
-one might then take the square root of the sums of the squares of the two
maximum set-back (or appendage) spring forces to obtain the true meximum
spring force produced by the nth building mode.

Letting wy;, 0a1, Yn1 end wpp, Ppp, P50, Y,o represent the
frequency, dimen51on}ess mode shape values and the generalized coordinate
for the first and second modes, respectively, the corresponding generalized
masses, stiffness factors, demping factors, forcing functions, and dis-
placements are given by the relations
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Making use of availlsble single degree relative velocity respgnse spectrum
curves, Sy(®w) vs. ®, for the specified ground scceleration, Ug(t), the
absolute meximum values for the generslized coordinates Y, and Y,p can
be determined using the relations

. .
!Y ( ] _ 7 Sv( nl) (Mn in ma ®al)
nl mex. ®q (M ®2 o 02 )
n nl a al

(8)
IY (t)l - 7n Sv(whe) (Mn <I)ne ¥ ma ¢ae)

n2 max. w 2 2
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Accepting st this point the square root of the sums of the squares approach,
the seismic coefficient Can as previously defined becomes

= (mi/g) [lYﬁl(t)liax. (Qal ) <I’nl)2 * IYnZ(t)'iax. (¢52—®n2)€]l/2(9)

The combined seismic coefficient for the set-back structure would then be
approximeted using Eq. (6).

B. Coupled Lateral-Torsional Motion of Eccentric Bulldings

l. Two degree of freedom gnalysis - It is rairly common to design a
building with centers of grsvity of the floor masses being located on one
vertical exls through the building and with the elastic centers (or centers
of twist) being located on another verticsl axis; thus, providing an
eccentricity which couples torsional motion with bending. A building of
this type is represented schematically in Fig. 2a. Assuming ground motion
in a direction normal to the plane of above mentioned axes, the amount of
torsion which couples with any one of the bending modes can be predicted
using the two degree of freedom model shown in Fig. 2b where and K.
represent the generalized masc and generalized spring constant, respechve-
ly, for the nth lateral mode of vibration (without eccentric1ty) and K,
represents the generalized spring constant for the nth torsional mode.

This two degree of freedom model is presented again in Fig. 3 where r is
the radius of gyration of mass M , r& is the eccentricity, r(1 +A) is the
radius of torsional stiffness, d3pn 18 & generallzed coordinate measuring
translation of the mass system, and where q,, is a generalized coordinate
measuring rotation of the mass system about the center of twist. If



coordinate gy, is to represent the nth lateral mode displacement of the

top of the building, it is once agein necessary that the support excitation
of the model be prescribed in accordance with Eq. (3). It can easily be
shown for the model in Fig. 3 that the generalized polar mass moment of
inertia J,, the generalized torsional spring constant , the uncoupled

(8 = 0) torsional frequency wnt, 2nd the uncoupled (& = O) bending
frequency wﬁb are given, respectively, by the relations

K K. .
- 2 5 o nt 2 nb
=M . = r . T e— B

Iy M5 K = KT+ 2)T 5 ol 70 % T (20)

It should be noted that (1) when & = O there is no eccentricity, i.e.
torsion and bending are completely uncoupled, (2) when both & and A
equal zero the frequencies of the uncoupled torsional and bending modes
are equal, (3) when & = 0 and A is greater than zero, the torsional
frequency exceeds the bending frequency, and (4) when & = 0 and A is less
than zero, the bending frequency exceeds the torsional frequency.

Demping is not present in the model as shown in Fig. 3, but will be
‘introduced subsequently into the generalized equations of motion. To
establish these equations of motion, consider first the undamped system
for which the force and moment equations of motion in terms of coordinates
9, and q2n are, respectively,

M q

+ q. +
nln Mnra q2n K

nb'qln - —MﬁUé(t) 7n

(11)
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Substi’uting the last two of Eqs. (10) into Egs. (11) and dividing by
Mn and Mnr’c‘) , respectively, gives the relations
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Using the linear transformation
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Egs. (12) become

(X3 2 2 .o
+ X - - = - Y
Xn " %o n 6mnt (Xt Xn) Ug(t) n

(15)

2 .
+ - = -
X, Yo, (Xt xn) Ug(t) v

Tt is significent to note that Egs. (15) are identical to Egs. (4) when the
demping ratios &, and £, are set equal to zero; thus, it is obvious that
the two degree of freedom system shown in Fig. 1b can also be used to study
the response of the two degree of freedom system shown in Fig. 3.

Appropriate damping can now be introduced into the torsion-bendi?g
model (Fig. 3) using its equivalent model shown in Fig. 1; thus, damping

terms similar to those shown in Eqs. (4) are introduced into Egs. (15)
as follows:

.o . 2 . . 2 b
- - - - = - t) 7
Xn * zahb gb Xn * aﬁb Xn 2B wnt gt(Xt Xn) B mht(xt Xn) Ug( ) n

oo ] . 2 .o
Xt * amnt gt(xt-xn) * Cu)nt(xt'xn) - —Ug(t) 7n (16)

It should be noted that for small values of &, i.e. small eccentricities,
coordinate represents primarily bending motion with only small torsional
motion added while coordinate X represents primarily torsional motion

with only small bending motion added. Therefore, demping ratios &, and E,
in effect, represent the bending and torsional demping, respectively.

As previously indicated, the above coupled equations of motion can be
solved numerically for any prescribed ground acceleration U (t) and for
eny set of parsmeters wyy, wnt, Ep» € and B to yleld the ~“desired
torsional seismic coefficient Cy, which is defined as

_ 2
Ctn(a%b’wht’gn’gt’a’yn) - l(Xt—Xn) aht/gl max. . n

This seismic coefficient is simply the ratio of the maximum dynamic torsion
developed at the base of the building to the static torsion developed at

this same location by a lg lateral loading. Note that Eq. (17) is identical
in form to Eq. (5). - ‘

Obtaining C,_ for n = 1,2,...,r, one can determine the true torsional
seismic coefficient C, resulting from the first r lateral vibration modes
using the approximate relation

- 2 2 \1/2

Again, ss with Eq. (6), only the first 2 or 3 modes of vibration need be
considered in eveluating C, by Eq. (18).

2. Single-degree of freedom analysis - Since the torsion bending
problem governed by Eqs. (16) is exsctly the same as the set-back
problem governed by Egqs. (U4), the previously developed single degree
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of freedom analysis can be applied directly to the torsion-bending problem;
therefore, no further discussion of this method is required.

ACCURACY OF APPROXIMATE METHODS OF ANALYSIS

To determine the accuracy of the two approximate methods of analysis
previously described, these methods were used to evaluate the set-back
(or appendage) seismic coefficient C, using the 6-story shear building
shown in Fig. % on top of which a single generalized mass m, representing
the set-back structure (or appendage) was placed. The seismic coefficients
obtained by these approximate methods, using a horizontal ground accelera-
tion U_(t) corresponding to the N-S component of the 1940 E1 Centro earth-
quake, are shown in Figs. 5 and 6 where coefficient Co is plotted against
period Ty of the set-back structure (or appendage). Also shown in Figs. 5
and 6 are the seismic cocfficients obtained by an exact multi-depgree of
freedom analysis. Mass mg equals 0.001 times the total mass of the build-
ing in Fig. 5 and 0.0l times the total mass of the building in Fig. 6.
The damping ratio g, equals 0.02 in each case. The periods of vibration
(Tl’TQ""’T6) of the 6-story building are indicsted along the abscissa
in each figure.

A comparison of the results in Fig. 5 shows that both approximate
methods of analysis are in reasonable sgreement with the exact method
except in those regions where the freguency of the set-back structure
(or appendage) approaches the frequency of one of the lower building modes.
In these regions, the two degree of freedom approximate method agrees quite
well with the exact method; however, the single degree of freedom approximat
method is obviously considerably in error. Fig. 6, vwhich represents a
larger mass my by a factor of ten, shows reasonable agreement of all three
methods over the entire period range.

SINGLE DEGREE OF FREEDOM ANALYSIS NEAR RESONANCE

- For small values of the mass ratio B_, the single degree of freedom
method of analysis as previously presenteg is considerably in error when
the frequency w, 1s near the frequency of one of the lower modes of the
building. To provide additional information on the behavior in such cases,
the two degree of freedom system shown in Fig. la was subjected to a sup-
port acceleration Us(t) corresponding to the N-S component of the El
Centro 1940 earthquake; i.e., 7n Was set equal to unity, and its forced
response was determined by solving the two generalized equations of motion.

The coupling of the above mentioned generalized equations of motion
due to ‘damping was neglected for this particular study; thus, yielding
equations of motion for two separate single degree of freedom systems whic
are characterized by the generslized quantities of Egs. (7). The error
introduced by neglecting the coupling of the generalized equations of
motion due to damping was investigated and found to be small for the
damping ratios considered in this particular study.

The results of the above general investigation to determine the so-
called '"resonance" effects are presented in Figs. 7 and 8. The seismic
coefficients are plotted as ordinates in each of these figures with
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period T, as the abscissa in Fig. 7 and wmass ratio B, a8 the abscissa in
Fig. 8.

In Fig. T, wmass ratio B, period T,, demping ratio § , and damping
ratio £, are held constant and equal to 0 001, 0.k40 seconas, 0.05, and
0.02, respectively. Curve No. 1 shows the contribution of the first
mode of vibration to the seismic coefficient Cgz, Curve No. 2 shows the
contribution of the second mode, Curve No. 3 shows the total coefficient
based on the square root of the sum of the squares of the lst and 2nd
mode mexima, and Curve No. 4 is the exact coefficient. As the period Ty
approaches Ty, it is clear that the square root of the sums of the squares
approach is appreciably in error. This error results because the frequen-
cies of the two degree system are very close to each other and are greatly
out of phase during ‘the critical period of the earthquake; thus, giving
first and second mode contributions which are of opposite sign.

It is evident that when the earthquake ground motion retains its
high intensity level over a relatively long duration, the two above men-
tioned mode contributions will come more into phase with each other; thus,
producing very large seismic coefficlents. This behavior can be clearly
demonstrated by calculating the response of the two degree system of
Fig. 1b to a stationary Geussian, random support acceleration which has a
constant power spectral density; i.e., is a "white" input. Crandall and
Mark have thoroughly studied this problem and show, for example, that the
mean square acceleration of the secondary mas? m, becomes extremely large
as the frequency ratio mh/mh approaches unity T). This increase in re-
sponse at 'resonance" is even more pronounced for the stationary random
input than for the transient El Centro 1940 input previously discussed.

In Fig. 8 "resonance" is maintained; i.e., Ty, = T, = 0.40 seconds;
therefore, this graph shows the effect of mass ratio B, on the appendage
selsmic coefficient for this resonant condition. Damping ratios are simi-
lar and Curves l-l4 represent the same quantities as in Fig. 7. Large
errors in the single degree method of analysis are observed for B, < 0.005.

TWO DEGREE OF .FREEDOM RESPONSE SPECTRA

The two degree of freedom method of analysis has been shown to yileld
good results even in the vicinity of the so-called 'resonance" range;
therefore, this method can be used reliasbly by the structural designer
for elther the “set-back" problem or the "torsion-bending" problem.

The "set-back" seismic coefficient C,, as defined by Eg. (5) has
been determined for a wide range of the parameters W, Wy, Ens Ba» and Bn
and for 7 1 by solving Egs. (4) numerically using the N-S component
of the 19HO El Centro earthquake as the prescribed excitation U (t). This
coefficient'is plotted in Fig. O as & function of period T, for 5 percent
of critical damping and for various combinations of period Ty and mass
ratio By. Similar plots for other val e§ of damping have been published
previously by J. Penzien and A. Chopra The numericel values of Cgy,
given in these plots are based on & unit value for the participation factor
7n. To obtain Cyy for 7 # 1, simply multiply the value taken frowm these
plots by the value of 7n.
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Due to the fact Egs. (4) and (16) are of identical form, the ordinates
of Fig. 9 also represent the "torsion~-bending" seismic coefficient Cin
defined by Eq. (17)provided the abscissa T = 27/ w, =

’ £
§a = §t; and 3n =f = 62/ (1 +‘A)2. n nb >

m 0
nt’ gn n

INFLUENCE OF INELASTIC DEFORMATIONS

The influence of permitting inelastic deformations to be developed in
the basic model (Fig. 2a) is now under investigation by J. Penzien and
D. E. RossII.4 Preliminary results of this investigation indicate that the
maximum relative displacement response, IXa—anmax_,are considerably reduced
for longer period systems (T, > 0.6 seconds) which possess "resonant”
characteristics, i.e. Th = T . These results are to be expected as the
"resongnt" influence is eliminated once appreciable yilelding tskes place.
However, for short period systems (T, = 0.2-0.3), the maximum relative
displacement response, fX —an ax,» ere considerably increased when they
possess 'resonant” characeristics. These results are to be expected.also
on the basis of previous studies of the inelastic response of single degree
of freedom systems.

CONCLUDING REMARKS

The following conclusions and recommendations are based upon the
results of the investigation reported herein:

(1) The two degree of freedom method of analysis accurately predicts the
set-back seismic coefficient Cap even when the period of the set-back
structure coincides with the fundamentsl period of the building. This
method of analysis also accurately predicts the "torsion-bending"
seismic coefficient C,._ even when the period of the fundamental tor-
sional mode of vibration equals the period of the fundamental lateral
mode of vibration. Thus, the availability of the two degree of freedom
response spectra makes this method of analysis practical in each case.

(2) The single degree of freedom method of analysis is considerably in
error when the period of the set-back structure is near one of the :
lover periods of the main building which supports it. This method also
is considerably in error when the period of the fundemental torsional
mode is near the fundamental lateral vibration mode. Therefore, this
method should not be used in these cases. ‘

(3) To greatly reduce the seismic forces in a set-back structure {or
appendage), it should be designed so that its fundamental period of
vibration differs considerably (preferably higher) from the first
lateral vibration mode of the building and also does not coincide with
the periods of other lower lateral vibration modes. . Likewise, to re-
duce the seismic forces in a building csused by an eccentricity, it
should be designed to that its fundamental period in torsion differs
considerably (prefersbly higher) from the first lateral vibration mode
of the building. ,

(L) The seismic forces in-a set-back structure (or appendage) and the seis-
mic torsion developed in an eccentric building cean be much larger than
predicted by standard methods. For example, consider a multi-story

II. Graduate Student, University of California, Berkeley
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(5)

building having a uniform eccentricity equal to 5 percent of the radius
of gyration (8 = 0.05), demping of 5 percent in both torsion and bend-
ing (¢ = ¢, = 0.05), a fundamental bending period of 0.6 seconds

(T = nO.6)f’ and a fundamental torsional period assuming no coupling
0f™0.6 seconds (T, = 2n/w 6= 0.6). Fig. 9 gives a torsion seismic
coefficient C,, edqual to %.8 (B = 0.0025) which is sbout 6 times as
large as the S€ismic coefficient for the fundamental lstersl vibration
mode. Thus, applying the static design lateral loading through the

mass centers and assuming that the eccentricity present (5 = .05) will
give the proper proportion of torsion to lateral loading is erroneous.
In this case, torsion is underestimated by a factor of 6. If, in the
above example, all parameters given remain the same except T 1is changed
from 0.6 to 0.4 seconds, then Fig. 9 gives a torsion seismic coefficient
Clt equal to 1.8 in which case torsion is under esiimated by a factor of
3. Further spreading of the periods will, of course, lower the torsion-
al seismic coefficient even more.

The seismic forces developed in a set-back structure (or appendage) and
the seismic torsion forces developed in an eccentric building, assuming
elastic systems, are much larger than stendard code values even when
designed in accordance with the recommendations of (3) above; therefore,
the desirable effects of inelastic deformations must be considered as is
standard practice in the design of bulldings.

The quantitative results presented in this paper are based on the N-S

component of ground motion recorded during the 1940 E1 Centro, California
earthquake. Considering the fact that such results differ appreciably when
using other earthquake ground motions of similar intensity, one must use the
data presented herein with caution and with good engineering judgment.

(1)

(2)

(1)

B4
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