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SYNOPSIS

The semi-infinite half-space consisting the base ground is taken into con-
sideration in the seismic response analysis of a near surface ground by virtue
of the discrete boundary equation which is deduced from an integral equation.
Illustrative examples are given to indicate the applicability of the method
and to examine the accuracy of numerical computation program.

INTRODUCTION

In analysing the seismic response of surface 1a¥er, the multiple reflec—
tion and refraction theory has been frequently used! In the theory it is as-
sumed that the system is consisted of horizontally stratified layers overlying
homogeneous half-space and excited by vertically incident, plane shear waves.
However this simplified model can not always represent the actual response of
surface layer. On the other hand, transforming the surface layer into a finite
system, it is possible to analyze the seismic response of surface layer with
complex geological properties. But there are many difficulties in finite ele-~
ment idealization of actual systemz’a). In the method the response of system
is considerably affected by the position of boundary which encloses the finite
area in an infinite media. Furthermore it is hard to take into account of the
radiation-damping, because the energy of incident wave can not radiate thrQugh
the boundary as closed form solutions in an infinite solid. The purpose o

this investigation is, therefore, to present an effective analysing procedure
for the surface layer with general irregular boundary. The first part of the
study is devoted to the development of the analysing procedure and the derived
method is then applied to a few actual examples to show the usefulness of the
method.

METHOD OF ANALYSIS

Considering the homogeneous and isotropic half-space, the fundamental so-
lutions of this media are defined by the displacement Ujj or force Pji in xj
direction at point @, which are induced by the concentrated force §(xy-ry)*exp
(iwt) acting in x3 direction at point R. The solution of boundary value prob-
lem of dynamic elasticity based on the integral method are obtained by deter-
mining the fictitious force intensity acting upon the auxilliary surface S* (
Fig.1) as satisfying the boundary condition on S%/. If the surface S and S*
are replaced with the polyhedron of N vertices, then the equations determining
the fictitious force intensity ¢ on those N nodal points are given as follows:

(1) when the surface traction is given by i-xp(Zwt)
T=L¢ ‘ 1)

where T is a vector of order 3N determined from the surface traction on the
frequency domain t, ® is a vector of order 3N and L is a square matrix of order
3N defined by
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(ii) when the surface displacement is given by Ueap (twt)
U=D2¢ (2)

where U is a vector of order 3V determined from the surface displacement in fre-—
quency domain U and D is a square matrix of order 3N defdined by

Ull U12 U13 X
[D]Zm = Upy Uzz Uz3 |*ASp (1, m= 1, 2, ccenee 5 N)
Usy Usz2 Uss | 4,

The equation of motion for surface layer 4 (Fig.2a) in matrix form is
(~wM + ZwC + K) § = F 3)

in which M, C and K are the mass, damping and stiffness matrix for a finite el-
ement system, and § is a vector of the nodal point displacement. For the pur-
pose of combining the boundary equation, it is necessary to express Eq. (3) in
partitioned form

2 |Mp Mo + w0 Cp Ce " Kp Ke Spi | Fp %)

MZ My ¢z ¢y KE Ka Sa Fa

in which Gb and Fb are the deformation and force of nodal points on the bounda-
ry S, respectively.

If the displacement and force at nodal points on the surface S induced by
the incident wave g in an infinite homogeneous and isotropic half-space with
imaginary surface Z-1' (Fig.2b) are determined as d and f, respectively, then
the fictitious force intensity distributed on the nodal points of surface S$*
satisfies the conditions, considering the continuity of stress and displacement
on the boundary S:

S =D¢+d (5), Fp=-f-L ¢ (6)

Eliminating & from Egs.(5) and (6), the relationship between the deforma-
tion and force of nodal points on the boundary S are obtained as follows:

Fp = =(K*y, + 2uC*,)8p + F#y (7)
in which .
D! = K* + 2%, F#, = -f + LD"d (8)
Egs. (4) and (7) can be combined to give
o2 (Mo Mel oy [CerE o] L [KekE K &1 _ |Fp )

M My ¢z ¢, Ke K4 84 Fa

APPLICATION TO ONE DIMENSIONAL SH WAVE PROPAGATION

In the case of one dimensional harmonic SH wave propagation in y direction
in Fig.3, the fundamental solutions for the domain y>n are given as follows:
kU(y,n) = texp(-iky)cos(kn), kP(y,n) = pew exp (-iky)cos (kn) (10)

where k=w/e, c¢ is shear wave velocity, w is circular frequency, y and n are po-
sition of the observation and that of the source point, respectively. If the
incident harmonic plane wave is given by Aexp(iky), the expressions for harmon~
ic displacement 4 and shear stress f have the representations
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d(y) = 24cos(ky), fly) = -2pcuwdsin(ky) 11) -

Considering the surface layer with depth H as shown in Fig.3, Eq.(8) is rewrit-
ten in the scalar form

0™ = P(H,n)/U(H,n) = ipcw
Fj = 2ipcwd’ (A" = Aexp(ikH) ) a2)
¢, =ope K =0

Substituting Eq.(12) into Eq.(9), the equation of motion for a layered system
on an elastic half-space with vertically incident wave is obtained in a matrix
form. This is similar to the equation of motion for layered medium obtained by
Tsai and Housner®/. 1In order to examine the accuracy of the calculation, solu-
tion of Eq.(9) under the restriction of Eq.(12) is compared with exact solution
obtained by the multiple reflection theory. The result is shown in Fig.4, in
which full line designates the exact solution and m is the number of nodal
points in a surface layer. The ground parameters used for calculation are
listed in Table 1. It is seen from this figure that for lower frequency range,
even m=3 yields answers of acceptable accuracy, although more point needed for
heigher frequency range.

This approximate computational method is also applied to a surface layer
composed of the material with non-linear properties. In this case, the motion
of equation being transformed into time domain is used, instead of Eq.(9). As
an example, Fig.5 shows the distribution with depth of the maximum shear stress
and strain in a subsurface ground, for which surface material is considered to
have bi-linear properties listed in Table 1. The prescribed acceleration is NS
component of the El Centro, 1940 and it is so modified as to have the maximum
acceleration of 100, 200 and 300 gal. The result reveals that the ratio of
shear strain to input acceleration level is dependent to the input amplitude
and that, in the contrary, the ratio of shear stress to input level is not so
significantly affected.

APPLICATION TO TWO DIMENSIONAL SH WAVE PROPAGATION

The fundamental solutions for outgoing waves in ? half-space are expressed
by the Hankel function of the second kind as follows®/,

Ulx,y/E,m) = 0.257 (H§ (k((2-E)%+(y-n)?) 12+H§ (k((z-E)%+(y-n)?)t2))
P(x,y/E,n) = wdU(x,y/E,m)/n

where 7 is the unit normal at (x,y), U is the shear modulus, (z,y) and (&,n)
are the position of the observation and source point, respectively. An inci-
dent harmonic plane wave of unit magnitude, making a counterclockwise angle 6
with respect to & axis, has the form

(13)

u(z,y) = exp(ik(-zcosd + ysind)) (14)

Then the expressions for harmonic displacement d and total shear stress f at
the point p(x,y) are given by

d(x,y) = 2exp(-ikxcosb)cos (kysind) (1s)
flx,y) = wdd(x,y)/on

Numerical computations for two example models are performed to show the
applicability of the method to various dynamic response p¥oblems. The first
example is prepared to test the computational program. Fig.6 is the schema of
the finite element mesh used in computations, in which the godal points on the
interface are positioned on a semi-circle with radius a. Fig.7 shows the dis—
and phase angle response of the interface for SH wave having incident

placement i
angle 60° and nondimensional frequency wa/me=0.75. In this figure the curves
represent the exact solutions and dots the results obtained by the proposed
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method. The case 4 shows the interface displacement when the base ground and
the semi-circular region have the same elastic constants. The case B shows the
response of a half-space from which semi-circular region is removed. The exact
solution for this case is given by Trifunac7). Comparison of both results
shows a high degree of accuracy of the method.

The second example is prepared to investigate the influence of incident
angle and frequency on the response of ground and/or super-stractures. The fi-
nite element idealization of an embankment are shown in Fig.8. The material
properties for the base ground and the embankment are given in Table 2. Figs.9
and 10 show the displacement amplitude along the surface of embankment due to
an incident harmonic wave with unit amplitude and angle of incident 0°, 30°,
60° and 90°. Shear wave velocity of the embankment is assumed to be 160 and
320m/sec in case of Figs.9 and 10, respectively. From these figures, it is
concluded that the distribution of surface displacement depends on the direc-
tion of arriving wave and on the ratio of shear wave velocity of the base
ground to that of embankment, and that the influence of frequency on the re-
sponse becomes more noticeable when the wave length of the incident motion is
comparable with the length of the embankment base.

CONCLUSION

The method studied in this paper is applicable for calculating the seismic
response of a system with arbitrary shaped boundary. The degree of accuracy of
the method is examined by comparing the response of ground motion calculated by
this method with that done by the exact solution for several numerical models.
Moreover the method is applied to an embankment with actual shape in order to
examine. the effect of the angle of incident and of the material properties of
the ground.

Although the analysis presented herein considers only simplified SH wave,
it is not difficult to expand the method for the case that another kind of body
waves and surface waves are incorporated provided the fundamental solutions of
layered ground are given.
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Table 2 Parameters for base ground
and embankment

Linear Bi-linear Base ground| Embankment
Surface | C=160 m/s s n=0.5 Densit
layer =2,24t g 4
y 55;2 z /m Yy=5x10"" (t/n¥) 1.8 1.8
Base C=720 m/s Shear Ce=160m/s
layer | pg=2.30t/m°| wave Cb=320m/s
| velocity ' Ce=320m/s
pg : density, n : elasto-plastic parameter, : yield strain
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DISCUSSION

J.M, Mulay (India)

What is the functional you have considered and what is
the shape of the finite element you have congidered ?

Author's Clogure

With regard to the question of Mr. Mulay, we wish to
state that from the standpoint of the variational theory, it
would be better to define the general functional including
also the domain B which is enclosing the discretized domain
A and transmits the waves radiated from the irregular domain
A, In such a case the functional dose not demand the subsi-
diary condition. In this analysis, however, we used the cla-
ssical functional which is obtained by the method developed by
Washizu, which is defined within the domain 2, and from which
we can easly obtaine the equation of motion such as Eq. (4).
Therefore the subgidiary condition of Eg. (7) is considered to
combine the analytical domain B with the domain A,

Triangilar and square element are used in this analysis.
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